Chứng minh rằng:
n! \(\ge2^{n-1}\)
Chứng minh rằng với mọi số nguyên dương \(n\ge2\) ta có:
\(2< \left(1+\dfrac{1}{n}\right)^n< 3\)
\(\left(1+\dfrac{1}{n}\right)^n=C_n^0+C_n^1.\dfrac{1}{n}+C_n^2.\dfrac{1}{n^2}+...+C_n^n.\dfrac{1}{n^n}\)
\(=1+1+C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}\)
\(=2+C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}>2\)
Mặt khác:
\(C_n^k.\dfrac{1}{n^k}=\dfrac{n!}{k!\left(n-k\right)!.n^k}=\dfrac{\left(n-k+1\right)\left(n-k+2\right)...n}{n^k}.\dfrac{1}{k!}< \dfrac{n.n...n}{n^k}.\dfrac{1}{k!}=\dfrac{n^k}{n^k}.\dfrac{1}{k!}=\dfrac{1}{k!}\)
\(< \dfrac{1}{k\left(k-1\right)}=\dfrac{1}{k-1}-\dfrac{1}{k}\)
Do đó:
\(C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)
\(\Rightarrow2+C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}< 2+1=3\) (đpcm)
chứng minh rằng \(S=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(n\in N,n\ge2\right)\)
\(S=\dfrac{1}{2^2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)
=>\(S< =\dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)
=>\(S< =\dfrac{1}{4}\cdot\left(1-\dfrac{1}{n}\right)=\dfrac{1}{4}\cdot\dfrac{n-1}{n}< =\dfrac{1}{4}\)
Chứng minh rằng: \(2n^{2n}>\left(n^2+1\right)^n\), trong đó \(n\ge2,n\inℕ\)
Chứng minh rằng:
\(10^n-36n-1⋮27\)
Biết rằng: \(\forall n\in N\) và \(n\ge2\)
Cho các số dương x,y,z chứng minh rằng: \(\left(1+\frac{x}{y}\right)^n+\left(1+\frac{y}{x}\right)^n\ge2^{n+1}\)
Chứng minh rằng: a = 1 + 2 + 3 + ...... + n và b = 2n + 1 ( n \(\in N;n\ge2\)) là 2 số nguyên tố cùng nhau.
HU hu Giúp mk với !!!!!!!!!!
Cho dãy số (Un) được xác định như sau: \(u_1=2023\), \(u_{n-1}=n^2.\left(u_{n-1}-u_n\right)\), với mọi n thuộc N*, \(n\ge2\). Chứng minh rằng dãy số (Un) có giới hạn và tìm giới hạn đó
Cho dãy số (Un) được xác định như sau \(u_1=2023\), \(u_{n-1}=n^2.\left(u_{n-1}-u_n\right)\), với mọi n thuộc N*, \(n\ge2\) . Chứng minh rằng dãy số (Un) có giới hạn và tìm giới hạn đó
Chứng minh rằng: \(\frac{a_{n-1}+a_{n+1}}{a_n+a_{n-2}}\) là phân số tối giản với \(\forall n\ge2\)
Thay : a(n) = x
Ta có : (x - 1 + x +1)/ (x+x-2) = 2x / (2x-2) = 2x / 2(x-1) = x/(x-1)
Gọi UCLN(x ; x-1) = d
=> x chia hết cho d; (x-1) chia hết cho d
=> 1 chia hết cho d => d = 1
=> x/(x-1) là phân số tối giản => dpcm