Tìm GTLN của các biểu thức sau
\(\sqrt{3-2x^2}\)
Tìm GTLN (nếu có) và GTNN (nếu có) của các biểu thức sau:
a) \(1+\sqrt{2-x},\sqrt{x-3}-2,1-3\sqrt{1-2x}\)
b) \(\sqrt{4-x^2};\sqrt{2x^2-x+3};1-\sqrt{-x^2+2x+5}\)
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
Tìm GTLN của các biểu thức sau:
a)3-x^2+2x (GTLN)
b)4X^2-20X+40(GTLN)
Tìm GTLN hoặc GTNN của các biểu thức sau
\(-2x+4\sqrt{x}+1\)
\(-2x+4\sqrt{x}+1\)
\(=-2\left(x-2\sqrt{x}+1\right)+3\)
\(=-2\left(\sqrt{x}-1\right)^2+3\le3\left(\forall x\ge0\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
Tìm GTLN, GTNN của các biểu thức sau :
a) A= \(\sqrt{4-x^2}\)
b) B= \(1-\sqrt{-x^2+2x+5}\)
c) \(\frac{1}{3-\sqrt{1-x^2}}\)
1. Cho số nguyên dương x.
a, Tìm GTNN của biểu thức \(P=\sqrt[3]{10^x-2}+\sqrt{x^x+3}+\sqrt{\left(\pi^2+1\right)^{x-1}+3}\).
b, Tìm GTLN của biểu thức \(Q=\sqrt[5]{\left(6x^2+5\right)^{1-x}}+\sqrt[3]{3-2x^2}\).
c, Chứng minh rằng: \(\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\ge1\).
2. Cho tam giác OEF vuông tại O có OE = a, OF = b, EF = c thỏa mãn điều kiện a, b, c là các số dương. Chứng minh rằng biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) không nhận bất kì giá trị nguyên dương nào.
Mong mọi người giúp mình bài này, mình cảm ơn trước ạ.
-Tìm GTLN và GTNN của biểu thức \(A=\sqrt{2x-3}+2\sqrt{3-x}\).
ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)
\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)
\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)
\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)
\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)
\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)
Tìm GTNN hoặc GTLN của biểu thức
\(2x+1y+2\sqrt{xy}-4\sqrt{x}-3\sqrt{y}+4\)
Tìm GTLN của biểu thức
\(N=2x+\sqrt{3-X^2}\)
Tìm GTLN của các biểu thức sau:
\(A=2x\left(6-x\right),0\le x\le6\)
\(B=x\sqrt{9-x},0\le x\le9\)
\(C=\left(6-x\right)\sqrt{x},0\le x\le6\)
\(A=2x\left(6-x\right)\le\dfrac{1}{2}\left(x+6-x\right)^2=18\)
Dấu "=" xảy ra khi \(x=3\)
\(B^2=x^2\left(9-x\right)=-x^3+9x^2\)
\(B^2=-x^3+9x^2-108+108=108-\left(x-6\right)^2\left(x+3\right)\le108\)
\(\Leftrightarrow B\le6\sqrt{3}\)
\(C^2=\left(6-x\right)^2x=32-\left(8-x\right)\left(x-2\right)^2\le32\)
\(\Rightarrow C\le4\sqrt{2}\)
Tìm GTLN của biểu thức:
A = \(\frac{-3}{2+\sqrt{x^2-2x+2}}\)
\(x^2-2x+2=x^2-2x+1+1=\left(x-1\right)^2+1\ge1\)
\(\Rightarrow\sqrt{x^2-2x+2}\ge1\)
\(\Rightarrow2+\sqrt{x^2-2x+2}\ge2+1=3\)
\(\Rightarrow\frac{3}{2+\sqrt{x^2-2x+2}}\le\frac{3}{3}\)
\(\Rightarrow\frac{-3}{2+\sqrt{x^2-2x+2}}\ge\frac{-3}{3}=-1\)
vậy Amin = -1 khi x=1
Không có giá trị lớn nhất bạn nhé, hoặc là viết nhầm biểu thức hoặc nhầm câu hỏi. Chúc bạn may mắn.
Vì \(x^2-2x+2=\left(x-1\right)^2+1\ge1\)nên ta có :
\(\Leftrightarrow\sqrt{\left(x-1\right)^2+1}\ge1\)
\(\Leftrightarrow2+\sqrt{x^2-2x+2}\ge3\)
\(\Leftrightarrow-\frac{3}{2+\sqrt{x^2-2x+2}}\le-\frac{3}{3}=-1\)
\(\Rightarrow A_{Max}=-1\)