Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Minh Thiện
Xem chi tiết
dao duc truong
Xem chi tiết
Thắng Nguyễn
2 tháng 3 2016 lúc 21:30

\(\Leftrightarrow\int^{xz+xy=44}_{yz+xz=23}\Rightarrow\int^{xy^2+\left(x^2-44\right)y-21x=0}_{\left(\sqrt{x^4-4x^2+1936+}+x^2+44\right)z-46x=0\Leftrightarrow\left(\sqrt{x^4-4x^2+1936}-x^2-44\right)z-46x=0}\)


\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(

loại )

\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}+x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(loại)

=>x,y,z vô nghiệm hoặc đề sai

Đúng ý bé
2 tháng 3 2016 lúc 21:40

x=22

y=1

z=1

luong ngoc tu
2 tháng 3 2016 lúc 23:29

z(x+y)=23      TH1 z=1 thi x=22,y=1

                     TH2 z=23 thi vo nghiem

kaneki_ken
Xem chi tiết
Thanh Tùng DZ
5 tháng 5 2020 lúc 16:24

điều kiện : x,y,z khác 0

Ta có : \(3=\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}=\frac{y^2z^2+x^2z^2+x^2y^2}{xyz}>0\)

Mà \(y^2z^2+x^2z^2+x^2y^2>0\Rightarrow xyz>0\)

\(\Rightarrow\frac{yz}{x},\frac{xz}{y},\frac{xy}{z}>0\)

Áp dụng BĐT Cô-si cho 3 số dương,ta có :

\(3=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge3\sqrt[3]{xyz}\ge3\)

Dấu "=" xảy ra khi | x | = | y | = | z |

Do đó : \(3=3\sqrt[3]{xyz}\)

\(\Rightarrow\hept{\begin{cases}xyz=1\\\left|x\right|=\left|y\right|=\left|z\right|\end{cases}}\)

+) Trường hợp x,y,z > 0 ta được x = y = z = 1

+) trường hợp hai trong 3 số x,y,z là số âm, ta có ( x; y ; z ) = ( 1 ; -1 ; -1 ) và các hoán vị

vậy....

Khách vãng lai đã xóa
Hoàng Nga Thi
Xem chi tiết
Nguyễn Vũ Thảo My
Xem chi tiết
Nguyễn Tuấn
4 tháng 1 2016 lúc 19:11

ban copy link nay :http://olm.vn/hoi-dap/question/305600.html roi vao google tra la có

 

Đinh Thị Ngọc Anh
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết
Trí Tiên亗
17 tháng 10 2020 lúc 9:35

Ta có phương trình \(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=3xyz\ge0\)

Ta lại có \(x^2y^2+y^2z^2+z^2x^2\ge3\sqrt[3]{\left(xyz\right)^4}=3xyz\sqrt[3]{xyz}\)

\(\Rightarrow3xyz\ge3xyz\sqrt[3]{xyz}\)

\(\Leftrightarrow1\ge\sqrt[3]{xyz}\ge0\)

\(\Leftrightarrow1\ge xyz>0\)

Vì x,y,z nguyên 

=> xyz=1

Vậy x,y,z là \(\left\{1,1,1;1,-1,-1;-1,-1,1;-1,1,-1\right\}\)

Cre: @tpokemont

Khách vãng lai đã xóa
dang kien cuong
Xem chi tiết
Nguyen Ha Nam
Xem chi tiết