Cho tam giác ABC cân tại A, AB = AC = 4cm, BC = 2cm. Tính độ dài đường cao BD của tam giác.
cho tam giác ABC cân tại A,hạ AM vuông góc BC tại H.Biết BH=2cm,AB=4cm
a)Tính AH
b)Tính chu vi tam giác ABC
c)Tính độ dài đường cao CM của tam giác ABC
d)Hạ MN vuông góc BC tại N.Tính MN
Đề sai à? Nếu đúng thì có phải là:
cho tam giác ABC cân tại A,hạ CM vuông góc với AB tại M, AH vuông góc BC tại H.Biết BH=2cm,AB=4cm
a)Tính AH
b)Tính chu vi tam giác ABC
c)Tính độ dài đường cao CM của tam giác ABC
d)Hạ MN vuông góc BC tại N.Tính MN
đề đúng đấy ạ và mình làm được rồi
Nhưng nếu ghi hạ AM vuông góc BC tại H thì M nằm ở đâu?
1. Cho tam giác ABC vuông tại A có AC=1cm, BC=2cm. Kẻ đường trung tuyến BK và đường cao AH
a) Tính AB
b) Tính BK và AH
2. Cho tam giác ABC vuông cân tại A (ˆBAC=90BAC^=90 độ, BD=BA). Ở phía ngoài tam giác ABC, dựng tam giác DAB vuông cân tại D (ˆDAB=90DAB^=90 độ, BD=BA). Gọi E là một điểm tùy ý trên DA. Đường thẳng đi qua E và vuông góc với BE cắt AC ở F
a) Gọi K là giao điểm của BD và AC. CMR tam giác KAB vuông cân tại A và DA là đường trung trực của đoạn KB
b) CMR tam giác KEA= tam giác BEA
c) CMR tam giác KEF cân tại E. Từ đó suy ra BE= EF
Cho tam giác ABC cân tại A có AB = AC = 6cm ; BC = 4cm . Các đường phân giác BD và CE cắt nhau tại I ( E trên AB và D trên AC )
a) Tính độ dài AD , ED
b) Cm : Tam giác ADB đồng dạng với tam giác AEC
c) Cm : IE.CD = ID.BE
d) Cho \(S_{ABC}\) = 60 \(cm^2\) . Tính \(S_{AED}\)
b: Xét ΔADB và ΔAEC có
\(\widehat{A}\) chung
\(\widehat{ABD}=\widehat{ACE}\left(=\dfrac{1}{2}\widehat{ABC}\right)\)
Do đó: ΔADB\(\sim\)ΔAEC
cho tam giác ABC cân tại A có AB=AC=6cm, BC=4cm. các đường phân giác BD và CE cắt nhau tại I
tính độ dài AD, ED
áp dụng tính chất đường phân giác ta có : AD/DC=AB/BC hay AD/AB=DC/BC
theo tính chất của dãy tỉ số bằng nhau, ta co: AD/AB=DC/BC =( AD+DC)/ (AB+BC)=6/10=3/5
VẬY AD = 3/5 x AB=3/5 x 6 =18/5 cm
Bài 1: Cho tam giác ABC cân tại B, kẻ CH vuông góc AB. Biết AH= 1cm, BH= 4cm. Tính độ dài AC.
Bài 2: Cho tam giác ABC vuông tại A. Cạnh AB= 5cm đường cao AH, BH= 3cm, CH= 8cm. Tính AC.
Bài 3: Cho tam giác ABC vuông tại A, có \(\frac{AB}{BC}=\frac{3}{5}\)và AC= 16cm. Tính độ dài các cạnh AB=BC.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
Cho tam giác ABC có AB=2cm,AC=3cm,BC=4cm,phân giác AD. Tính độ dài của BD và CD
Ta có: \(BD+CD=BC=4\)
\(\Rightarrow BD=4-CD\)
Áp dụng định lý phân giác:
\(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{4-CD}{2}=\dfrac{CD}{3}\)
\(\Rightarrow12-3CD=2CD\)
\(\Rightarrow CD=\dfrac{12}{5}\left(cm\right)\)
\(BD=4-CD=\dfrac{8}{5}\left(cm\right)\)
ai biết giải giúp minh với:
Câu 1:Cho tam giác ABC có 3 góc nhọn,các đường cao AD,BE,CK cắt nhau tại H.chứng minh
a,tứ giác HECD nội tiếp
b,Tia DA là tia phân giác góc EDK
Cây 2:cho tam giác ABC vuông tai A,biết ab=6cm,ac=8cm
A.tính bc
B,kẻ đường cao AH,tính Ah
Câu 3:Cho tam giác abc vuông tại A,BIẾT AC=4cm,Bc=5cm.
A,Tính cạnh AB
B,kẻ đường cao AH,TÍNH AH
Câu 4:Cho tam giác vuông ABC,vuông tại A(H thuộc BC).bIẾT AB=12CM,AC=5CM.tính BH,CH
Câu 5:cho tam giác ABC vuông tại A,đường cao AH(H THUỘC BC).biết BC=18cm,BH=6cm.Tính độ dài các cạnh AB,AC
Cau 6:Cho tam giác ABC,vuông tại A,biết AB=4cm,đường cao AH=2CM,tính các góc và các cạnh còn lại cua tam giac.?
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
cho tam giác ABC cân tại A biết AB=AC=7cm.Điểm D nằm trên tia BC sao cho AD=8cm.Biết BC =2cm,tính độ dài cạnh BD
Tam giác ABC có AB= 9cm, AC=12cm, BC=15cm
a) Chứng minh tam giác ABC vuông tại A
b) Đường phân giác góc B cắt AC tại D. Tính độ dài AD, AC
c) Đường cao AH cắt BD tại I. Chứng minh AB.BI=BH2
d) Chứng minh tam giác AID cân
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: Xét ΔBAC có BD là phân giác
nen AD/BA=DC/BC
=>AD/3=DC/5=12/8=1,5
=>AD=4,5cm; DC=7,5cm
d: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AID=góc ADI
=>ΔAID cân tại A