Chứng tỏ rằng
1+3+3^2+...+3^2014+3^2015 chia hết cho 13
chứng tỏ rằng 1 + 3 + 3^2 + 3^3 + 3^4 +...+ 3^2014 + 3^ 2015 chia hết cho 13
= (1 + 3 + 3^2) + ....... + (3^2013 + 3^2014+ 3^2015)
=1.13 + ...... + 3^2013.13
=13(1 + 3^3 + ... + 3^2013)
=> chia hết cho 13
Chứng tỏ rằng: 1+ 3 + 3^2 + 3^3 + 3^4 + ...+ 3^2014 + 3^2015 chia hết cho 13
Chứng tỏ rằng : 1+3+32+33+34+...+32014+32015 chia hết cho 13
Chứng tỏ rằng 1+3+3^2+3^3+...+3^2014+3^2015 chia hết cho 13.
GIẢI CỤ THỂ CHO MÌNH NHA.MÌNH CẢM ƠN NHIỀU.
\(\text{Đặt }A=1+3+3^2+...+3^{2015}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2013}+3^{2014}+3^{2015}\right)\)
\(=\left(1+3+9\right)+3^3.\left(1+3+9\right)+...+3^{2013}.\left(1+3+9\right)\)
\(=13+3^3.13+...+3^{2013}.13\)
\(=13.\left(1+3^3+...+3^{2013}\right)\text{chia hết cho 13}\)
=> A chia hết cho 13 (đpcm).
A=1+3+32+33+....+32014+32015
A=1+(3+32+33)+......+(32013+32014+32015)
A=1+3(1+3+32)+......+32013+(1+3+32)
A=1+(3.13)+.....+(32013+13)
A=13.(1+3+....+32013)
SUY RA : A CHIA HET CHO 13
cho c=1*2*3*...*2014*(1+1/2+1/3+...+1/2014) chứng tỏ c chia hết cho 2015
cho A=3^2014 + 3^2015 + 3^2016+3^2017. chứng tỏ A chia hết 118
Cho A=3^1+3^2+3^3+3^4+....+3^2015+3^2016.Chứng tỏ rằng A chia hết chi 4 và 13.
\(A=3+3^2+...+3^{2016}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)
\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{2015}\cdot\left(1+3\right)\)
\(A=4\cdot\left(3+3^3+...+3^{2015}\right)\)
Vậy A chia hết cho 4
_____________
\(A=3+3^2+3^3+...+3^{2016}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)
\(A=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+...+3^{2014}\cdot\left(1+3+9\right)\)
\(A=13\cdot\left(3+3^4+...+3^{2014}\right)\)
Vậy A chia hết cho 13
Cho: D= 1+3+3^2+3^3+...+3^2014+3^2015
Chứng minh rằng D chia hết cho 13
Mình cảm ơn trước nhé!
a) ChoA=2014+20142+20143+20144...+20142014.Chứng tỏ A chia hết cho 2015
b) Tìm các số tự nhiên n sao cho 6 chia hết cho (n-1)
a) A = 2014 + 20142 + 20143 + 20144 + ..... + 20142014
A = ( 2014 + 20142 ) + ( 20143 + 20144 ) + ..... + ( 20142013 + 20142014 )
A = 2014( 1 + 2014 ) + 20143( 1 + 2014 ) + ....... 20142013( 1 + 2014 )
A = 2014 . 2015 + 20143 . 2015 + ....... + 20142013 . 2015
A = ( 2014 + 20143 + ...... 20142013 ) . 2015 chia hết cho 2015
b) Ta có 6 chia hết cho n - 1
=> n-1 thuộc Ư(6) = { 1 ; 2 ; 3 ; 6 }
Nếu n - 1 = 1 => n = 2 (tm)
Nếu n - 1 = 2 => n = 3 (tm)
Nếu n - 1 = 3 => n = 4 (tm)
Nếu n - 1 = 6 => n = 7 (tm)
Vậy n thuộc { 2 ; 3 ; 4 ; 7 }
Mk ko chắc là đúng
hok tốt