Cho ΔABC vuông ở A. Vẽ AH ⊥ BC; HP ⊥ AB và lấy E đối xứng với H qua AB. Vẽ HQ ⊥ AC và lấy F đối xứng với H qua AC.
a) C/m ΔAHE cân tại A; ΔAHF cân tại A
b) C/m A là trung điểm của EF.
c) C/m BE // CF
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho ΔABC. Vẽ ra phía ngoài của tam giác này các tam giác vuông cân ở A là ABE và ACF. Vẽ AH ⊥ BC. Đường thẳng AH cắt EF tại O. Chứng minh rằng O là trung điểm của EF.
Cho ΔABC, vẽ AH vuông góc với BC tại H. Biết BH = 9cm, CH= 16cm AH=12cm
a) Tính AB,AC b) CM: ΔABC là tam giác vuông
a, Xét Δ AHC vuông tại H, có :
\(AB^2=AH^2+HB^2\)
=> \(AB^2=12^2+9^2\)
=> \(AB^2=225\)
=> AB = 15 (cm)
Xét Δ AHC vuông tại H, có :
\(AC^2=AH^2+HC^2\)
=> \(AC^2=12^2+16^2\)
=> \(AC^2=400\)
=> AC = 20 (cm)
Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go đảo)
=> Δ ABC vuông tại A
Cho ΔABC vuông tại A. Vẽ AH⊥BC (H∈BC)
a,Chứng minh ΔHBA đồng dạng ΔABC
b,Có AB=9cm;AC=12cm. Tính BC,AH
c,Trên cạnh HC lấy điểm M sao cho HM=HA.Qua M vẽ đường thẳng vuông góc với BC cắt AC tại I. Qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc IMC tại A. Chứng minh rằng ba điểm H,I,K thẳng hàng
cho tam giác ABC vuông ở A , có AB=6cm, AC=8cm. vẽ đường cao AH a, tính BC b, chứng minh ΔABC đồng dạng với ΔAHB c, chứng minh AB2=BH.BC. Tính BH, HC d, vẽ phân giác AD (D ϵ BC) tính DB
(Vẽ hình và giải ạ) Cho tam giác ABC vuông tại A. Kẻ đường cao AH.
a) Chứng minh ΔABC đồng dạng ΔAHC
b) Chứng minh ΔABC đồng dạng ΔHBC
c) Chứng minh AH ² = HB . HC
d) Chứng minh AB ² = AH . BC
a,xét ΔABC và ΔAHC, có:
góc BAC=góc AHC(=90 độ)
góc C chung
=>ΔABC đồng dạng ΔAHC(g-g)
cho tam giác ABC vuông ở A , có AB=6cm, AC=8cm. vẽ đường cao AH a, tính BC b, chứng minh ΔABC đồng dạng với ΔAHB c, chứng minh AB2=BH.BC. Tính BH, HC d, vẽ phân giác AD của góc A(D ϵ BC) tính DB
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
c: ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
BH=AB^2/BC=6^2/10=3,6cm
CH=10-3,6=6,4cm
d: AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=10/7
=>DB=30/7cm
* Cho ΔABC vuông tại A có B= \(30^0\), AB=6cm
a. Giải ΔABC
b. Vẽ đường cao AH và trung tuyến AM của ΔABC. Tính diện tích ΔAHM
* Cho ΔABC vuông tại A có AB=3 cm, BC=5cm, đường cao AH
a. Tính số đo góc B, C
b. Gọi AE là phân giác của góc A (E ∈ BC). Tính AE
Bài 1:
a: Xét ΔBAC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔBAC vuông tại A có
\(AB=BC\cdot\sin60^0\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
Cho ΔABC vuông tại A, AH ⊥ BC tại H. Trên cạnh BC lấy D sao cho BD = BA. Đường vuông góc với BC tại D cắt AC ở E
a) So sánh AE và DE
b) Chứng minh tia AD là tia phân giác của góc HAC
c) Vẽ DK vuông góc với AC tại K. Chứng minh rằng AK = AH
a, vì BD=BA nên t.giác DBA caab tại B
=>\(\widehat{BDA}\)=\(\widehat{BAD}\)mà \(\widehat{EDB}\)=\(\widehat{A}\)=90 độ nên suy ra góc \(\widehat{EAD}\)=\(\widehat{EDA}\)
=>t.giác EAD cân tại E
=>AE=DE đpcm
b,vì ED và AH cùng vuông góc vs BC nên ED//AH
=> \(\widehat{EDA}\)=\(\widehat{DAH}\)(so le) mà \(\widehat{EDA}\)=\(\widehat{EAD}\)(t.giác AED cân tại E)
=>\(\widehat{DAH}\)=\(\widehat{EAD}\)
=> AD là p/g của góc HAC
c, xét 2 t.giác vuông AKD và AHD có:
AD chung
\(\widehat{KAD}\)=\(\widehat{HAD}\)(AD là p/g của \(\widehat{HAC}\))
=>t.giác AKD=t.giác AHD(CH-GN)
=>AK=AH
#HỌC TỐT#
cho tam giác ABC vuông ở A;AB=15cm; CA=20 cm,đường cao AH
a) CM: ΔHBA∼ ΔABC,ΔHBA∼ΔHAC
B) TÍNH ĐỘ DÀI BC,AH,HB,HC
C) VẼ ĐƯỜNG PHÂN GIÁC AD CỦA ΔABC,TÍNH ĐỘ DÀI DB,DC
D) TÍNH DIỆN TÍCH ΔAHB
GIÚP MÌNH VỚI MAI THI R
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
HB=15^2/25=9cm
HC=25-9=16cm
c:AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=25/7
=>DB=75/7cm; DC=100/7cm
Cho ΔABC vuông taï A và góc C = 300.Trên cạnh BC lấy điểm D sao cho BD = BA . Vẽ DE vuông góc AC (E thuộc AC). Vẽ AH vuông góc BC (H thuộc BC). Chứng minh :AH + BC > AB +AC.