Cho \(\frac{x}{8}=\frac{y}{3}=\frac{z}{5}\). Tính giá trị biểu thức \(A=\frac{x+y-3z}{x-y+3z}\)
Cho các số x,y,z khác thỏa mãn $\frac{2x-3y}{5}$ =$\frac{5y-2z}{3}$ =$\frac{3z-5x}{2}$
Tính giá trị biểu thức B=$\frac{12x+5y-3z}{x-3y+2z}$
Cho \(\frac{4x}{-5}=\frac{6y}{7}=\frac{-3z}{8}\) và x+2y-3z=-273
Giá trị của biểu hức A = |x+y+z+1| là
Biết x : y : z = 5 : 4 : 3 . Hỏi giá trị của biểu thức \(P=\frac{x+2y-3z}{x-2y+3z}+\frac{1}{3}\)
x:y:z=5:4:3=>x/5=y/4=z/3
\(\frac{x+2y-3z}{5+4.2-3.3}=\frac{x-2y+3z}{5-4.2+3.3}\Leftrightarrow\frac{x+2y-3z}{5+8-9}=\frac{x-2y+3z}{5-8+9}\)
\(\frac{x+2y-3z}{4}=\frac{x-2y+3z}{6}\Leftrightarrow\frac{x+2y-3z}{x-2y+3z}=\frac{4}{6}=\frac{2}{3}\)
\(\Rightarrow P=\frac{x+2y-3z}{x-2y+3z}+\frac{1}{3}=\frac{2}{3}+\frac{1}{3}=\frac{3}{3}=1\)
vay P=1
nhớ tick
Cho 3 số dương x,y,z thỏa mãn x+2y+3z=20. Tìm giá trị nhỏ nhất của biểu thức \(M=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
\(M=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
\(=\left(\frac{3}{x}+\frac{3x}{4}\right)+\left(\frac{9}{2y}+\frac{y}{2}\right)+\left(\frac{4}{z}+\frac{z}{4}\right)+\left(\frac{x}{4}+\frac{y}{2}+\frac{3z}{4}\right)\)
\(\ge13\)
Dấu "=" xảy ra tại x=2;y=3;z=4
Để ý điểm rơi mà làm bạn :)
Quan trọng lại việc tìm điểm rơi như thế nào?
Another Way:
\(M=\frac{3yz\left(x-2\right)^2+2zx\left(y-3\right)^2+xy\left(z-4\right)^2}{4xyz}+13\ge13\)
Cho \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) . Tính giá trị của biểu thức
\(A=\frac{x+2y+3z}{3x+2y+z}\) ?
- Làm theo 2 cách
Cách 1: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\Rightarrow\begin{cases}x=2.k\\y=3.k\\z=4.k\end{cases}\)
Ta có: \(A=\frac{x+2y+3z}{3x+2y+z}=\frac{2.k+2.3.k+3.4.k}{3.2.k+2.3.k+4.k}=\frac{2.k+6.k+12.k}{6.k+6.k+4.k}=\frac{20.k}{16.k}=\frac{5}{4}\)
Cách 2: Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{3x}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y+3z}{2+6+12}=\frac{x+2y+3z}{20}\left(1\right)\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{3x}{6}=\frac{2y}{6}=\frac{3x+2y+z}{6+6+4}=\frac{3x+2y+z}{16}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x+2y+3z}{20}=\frac{3x+2y+z}{16}\)
\(\Rightarrow A=\frac{x+2y+3z}{3x+2y+z}=\frac{20}{16}=\frac{5}{4}\)
1, Cho hai số dương x,y thỏa mãn x+y=1. Tính giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
2, Cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\) . Cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Câu 1:
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)
\(\ge\frac{1}{8}+2+\frac{255}{256x^2y^2}\)
Ta lại có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow1\ge16x^2y^2\)
\(\Rightarrow M\ge\frac{17}{8}+\frac{255}{16}=\frac{289}{16}\)
Dấu = xảy ra khi x=y=1/2
Áp dụng BDT Cauchy-Schwarz: \(\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\ge\frac{1}{3x+3y+2z}\)
CMTT rồi cộng vế với vế ta có.\(VT\le\frac{1}{16}\cdot4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)
Dấu = xảy ra khi x=y=z=1
Cho 3 số x,y,z khác 0 thỏa mãn điều kiện:
\(\frac{y+z+t-nx}{x}=\frac{z+t+x-ny}{y}=\frac{t+x+y-nz}{z}=\frac{x+y+z-nt}{t}\)(n là số tự nhiên)
và x+y+z+t=2012. Tính giá trị biểu thức P=x+2y-3z+t.
a)Cho x,y,z khác 0 và x-y-z=0.Tính giá trị biểu thức:
\(B=\left(1-\frac{z}{x}\right)\cdot\left(1-\frac{x}{y}\right)\cdot\left(1-\frac{y}{z}\right)\)
b)Cho\(\frac{3\cdot x-29}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
CM:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
c)Cho biểu thức M=\(\frac{5-x}{x-2}\).Tìm x nguyên để M có giá trị nhỏ nhất
biết x : y : z = 5 : 4 : 3 . giá trị của biểu thức
\(P=\frac{x+2y-3z}{x-2y+3z}+\frac{1}{3}\)là?