CMR: B=x5-x+7 không phải là số chính phương với mọi x thuộc Z+
a)CMR với mọi x,y thuộc Z thì
S=(x+y)(x+2y)(x+3y)(x+4y)y^4 là số chính phương
b) Cho T=(t-1)(t-3)(t-4)(t-6)+9
1)CM: T lớn hơn hoặc bằng 0 với mọi t
2)T là số chính phương với mọi t thuộc Z
chứng minh rằng : x5-x+ 2 không phải là số chính phương với mọi x thuộc z+.
giúp mình với nhé !
Ta có \(x^5-x=x\left(x^4-1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)⋮3\)
mà \(x\left(x+1\right)\left(x-1\right)\left(x^2+1\right)⋮3\)cho nên x5-x+2 chia 3 dư 2 nên không phải là số chính phương.
Chứng minh rằng:x^5-x^2 ko phải là số chính phương với mọi x thuộc Z
chứng minh rằng x^5 -x +2 không là số chính phương với mọi x thuộc Z
x5-x+2 = x(x4-1)+2
=> x4-1 = -2/x
=> x ko the la so chinh phuong
cmr 2x2 + 3 không là số chính phương với mọi x thuộc N
CMR: A = a^n + b^n + c^n + d^n là một hợp số với mọi số TN n. Biết ab = cd
CMR: B = xyz + yzx + zxy không phải là số chính phương ( ko phải x nhân y nhân x đâu nhé mà là số có ba chữ số được tạo thành bởi 3 3 số x ,y ,z í. )
Làm thấy hợp lí t cho tick nhé
\(\text{Gọi: }i=\left(a,c\right)\Rightarrow a=ia';c=ic'\left(với\left(a',c'\right)=1\right)\Rightarrow a'b=c'd\Rightarrow b\text{ chia hết cho c}'\)
\(d\text{ chia hết cho a}'\Rightarrow b=c'l;d=a'k\left(l,k\text{ tự nhiên}\right)\Rightarrow a'c'l=a'c'k\Rightarrow l=k\Rightarrow\)
\(b=c'l;d=a'l\Rightarrow A=\left(l+i\right)\left(c'+a'\right)\text{ là hợp số}\)
\(B=100x+100y+100z+10x+10y+10z+x+y+z=111\left(x+y+z\right)=3.37.\left(x+y+z\right)\)
\(\text{ là số chính phương }\Rightarrow3.37.\left(x+y+z\right)\text{ chia hết cho }3^2.37^2\Rightarrow x+y+z\text{ chia hết cho 111}\left(\text{vô lí}\right)\)
Xin lỗi bạn nhưng mà mình mới có lớp 6 nên chưa biết a' với c' là gì nên bạn có cách nào khác không?. Mình cám ơn!
1. Cho n lẽ. CMR: n2020 + 1 không phải số chính phương
2. Cho n thuộc Z. CM: A = n4 + 2n3 + 2n2 + n + 7 không phải là số chính phương
3. Cho n lẽ. CM : n3 + 1 không phải là số chính phương
1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)
Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.
2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương
\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)
\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)
Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:
+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)
\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)
+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)
\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.
3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:
---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)
Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau
Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau
---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)
Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)
Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)
-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)
Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.
cmr : với mọi a,b,c thuộc Z luôn tìm được số nguyên dương n thỏa mãn f(n)=n3+an2+bn+c không là số chính phương
cmr : với mọi a,b,c thuộc Z luôn tìm được số nguyên dương n thỏa mãn f(n)=n3+an2+bn+c không là số chính phương