tìm gtln của biểu thức √x-1 + √16-6x +√6x-3
tìm gtln của biểu thức: E= -x^4-10x^2-6x^3-6x+15
\(E=-\left(x^4+10x^2+9+6x^3+6x\right)+24\)
\(=-\left[\left(x^2+9\right)\left(x^2+1\right)+6x\left(x^2+1\right)\right]+24\)
\(=-\left(x^2+1\right)\left(x^2+9+6x\right)+24\)
\(=-\left(x^2+1\right)\left(x+3\right)^2+24\le24\)
\(E_{max}=24\) khi \(x=-3\)
Tìm GTLN của biểu thức :
\(A=x^4-6x^3+9x^2+6x+2021\)
Tìm GTLN của biểu thức: M= - 9x2+6x-3>0,\(\forall\)x
`M=-9x^2+6x-3`
`M=-(9x^2-6x+3)`
`M=-(9x^2-6x+1+2)`
`M=-(3x-1)^2-2`
Vì `-(3x-1)^2 <= 0 AA x`
`<=>-(3x-1)^2-2 <= -2 AA x`
Hay `M <= -2 AA x`
Dấu "`=`" xảy ra `<=>(3x-1)^2=0<=>3x-1=0<=>x=1/3`
Vậy `GTLN` của `M` là `-2` khi `x=1/3`
\(M=-9x^2+6x-3\)
\(M=-\left(9x^2-6x+3\right)\)
\(M=-\left[\left(3x-1\right)^2+2\right]\)
\(M=-\left(3x-1\right)^2-2\)
\(\Rightarrow Max_M=-2\) khi \(3x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
`-9x^2 + 6x - 3`.
`= -(3x - 1)^2 - 2`.
Vì `(3x-1)^2 >=0 => -(3x-1)^2 <=0 => -(3x-1)^2 - 2 <= -2`
Dấu bằng xảy ra `<=> 3x - 1 = 0 => x = 1/3`.
Vậy `Max_M = -2 <=> x = 1/3`.
Tìm GTLN, GTNN của biểu thức: `C=(6x+11)/(x^2-2x+3)`
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
a) Tìm GTLN của biểu thức: 6x-x^2-11
b) Tìm GTNN của biểu thức: x^2-5x-2a) \(A=6x-x^2-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
Dấu \(=\)khi \(x-3=0\Leftrightarrow x=3\).
b) \(B=x^2-5x-2=x^2-2.\frac{5}{2}x+\left(\frac{5}{2}\right)^2-\frac{33}{4}=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge-\frac{33}{44}\)
Dấu \(=\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).
Tìm GTLN của biểu thức D=-x^2+6x-11
1.tìm gtln của biểu thức 10+2x-5x^2
2.tìm gtnn của biểu thức x^2-6x+10
Mn giúp vs
a) Đặt \(A=10+2x-5x^2\)
\(-A=5x^2-2x-10\)
\(-5A=25x^2-10x-50\)
\(-5A=\left(25x^2-10x+1\right)-51\)
\(-5A=\left(5x-1\right)^2-51\)
Do \(\left(5x-1\right)^2\ge0\forall x\)
\(\Rightarrow-5A\ge-51\)
\(A\le\frac{51}{5}\)
Dấu "=" xảy ra khi : \(5x-1=0\Leftrightarrow x=\frac{1}{5}\)
Vậy Max A = \(\frac{51}{5}\Leftrightarrow x=\frac{1}{5}\)
b) Đặt \(B=x^2-6x+10\)
\(B=\left(x^2-6x+9\right)+1\)
\(B=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(B\ge1\)
Dấu "=" xảy ra khi :
\(x-3=0\Leftrightarrow x=3\)
Vậy Min B \(=1\Leftrightarrow x=3\)
1. Tìm GTNN của biểu thức :
A = 4x2 - 4x + 5 ; B = 3x2 + 6x - 1
2. Tìm GTLN của biểu thức :
A = 10 + 6x - x2 ; B = 7 - 5x - 2x2
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4