Rút gọn phân thức
\(\frac{14xy^5\left(2x-3y\right)}{21x^2y\left(2x-3y\right)^2}\)
Rút gọn phân thức sau :
\(\frac{14xy^5\left(2x-3y\right)}{21x^2y\left(2x-3y\right)^2}\)
\(\frac{14xy^5\left(2x-3y\right)}{21x^2y\left(2x-3y\right)^2}=\frac{2y^4}{3x\left(2x-3y\right)}\)
Rút gọn phân thức:
\(\frac{14xy^5\left(2x-3y\right)}{21x^2y\left(2x-3y\right)^2}\)
\(=\frac{2.7.xy.y^5\left(2x-3y\right)}{3.7.xy.x\left(2x-3y\right)^2}=\frac{2y^5}{3x\left(2x-3y\right)}\)
\(\frac{14xy^5\left(2x-3y\right)}{21x^2y\left(2x-3y\right)^2}\)
\(=\frac{2y^4}{3x\left(2x-3y\right)}\)
\(\frac{14xy^5\left(2x-3y\right)}{21x^2y\left(2x-3y\right)}\)
\(=\frac{2y^4}{3x\left(2x-3y\right)}\)
Rút gọn các phân thức:
a)\(\dfrac{14xy^5\left(2x-3y\right)}{21x^2y\left(2x-3y\right)^2}\) b)\(\dfrac{8xy\left(3x-1\right)^3}{12x^3\left(1-3x\right)}\)
c) \(\dfrac{20x^2-45
}{\left(2x+3\right)^2}\) d) \(\dfrac{5x^2-10xy}{2\left(2y-x\right)^3}\)
\(a,=\dfrac{2y^4}{3x\left(2x-3y\right)}\\ b,=-\dfrac{2y\left(3x-1\right)^2}{3x^2}\\ c,=\dfrac{5\left(4x^2-9\right)}{\left(2x+3\right)^2}=\dfrac{5\left(2x-3\right)\left(2x+3\right)}{\left(2x+3\right)^2}=\dfrac{5\left(2x-3\right)}{2x+3}\\ d,=\dfrac{5x\left(x-2y\right)}{-2\left(x-2y\right)^3}=-\dfrac{5x}{2\left(x-2y\right)^2}\)
Bài 1: rút gọn phân thức
a) \(\frac{14xy^2\left(2x-3y\right)}{21x^2y\left(2x-3y\right)^2}\)
b) \(\frac{8xy\left(3x-1\right)^2}{12x^3\left(1-3x\right)}\)
c) \(\frac{20x^2-45}{\left(2x+3\right)^2}\)
d) \(\frac{5x^2-10xy}{2\left(2y-x\right)^3}\)
e) \(\frac{80x^3-125x}{3\left(x-3\right)-\left(x-3\right)\left(8-4x\right)}\)
f) \(\frac{9-\left(x+5\right)^2}{x^2+4x+4}\)
g) \(\frac{32x-8x^2+2x^3}{x^3+64}\)
h) \(\frac{5x^3+5x}{x^4-1}\)
Bài 2: Quy đồng mẫu thức của các phân thức sau
a) \(\frac{7x-1}{2x^2+6x};\frac{5-3x}{x^2-9}\)
b) \(\frac{x+1}{x-x^2};\frac{x+2}{2-4x+2x^2}\)
c) \(\frac{4x^2-3x+5}{x^3-1};\frac{2x}{x^2+x+1};\frac{6}{x-1}\)
d) \(\frac{7}{5x};\frac{4}{x-2y};\frac{x-y}{8y^2-2x^2}\)
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
Đơn thức – 8x3y2z3t2 chia hết cho đơn thức nào ?
Kết quả của phép chia (2x3 - 5x2 + 6x – 15) : (2x – 5) là:
Tìm tất cả giá trị của n Z để 2n2 + n – 7 chia hết cho n – 2.
Kết quả rút gọn phân thức 14xy^5(2x-3y)/21x^2y(2x-3y)^2 là:
nhớ ghi lời giải nha các bạn
Câu 2:
\(=\dfrac{x^2\left(2x-5\right)+3\left(2x-5\right)}{2x-5}=x^2+3\)
Câu 3:
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
Rút gọn phân thức:
\(a,\dfrac{4x^3}{10x^2y}\)
\(b,\dfrac{10xy^5\left(2x-3y\right)}{12xy\left(2x-3y\right)}\)
\(a,\frac{4x^3}{10x^2y}=\frac{2x}{5y}\)
\(b,\frac{10xy^5\left(2x-3y\right)}{12xy\left(2x-3y\right)}=\frac{5y^4}{6}\)
Hok Tốt~~
\(\frac{4x^3}{10x^2y}=\frac{2x}{5y}\)
\(\frac{10xy^5\left(2x-3y\right)}{12xy\left(2x-3y\right)}=\frac{5y^4}{4}\)
Tham khảo nhé~
a) \(=\frac{2x}{5y}\)
b) \(=\frac{5y^4}{4}\)
#Học_tốt
Rút gọn biểu thức
A= \(1+\left[\frac{2x^3y^2+2x^2y^3}{x+y}:\left(\frac{2x^2y^2}{x^2+xy}+\frac{2x^2y^2}{y^2+xy}\right)\right]\)
Câu 2 Rút gọn các phân thức sau::(2 điểm )
a/ \(\dfrac{21x^2y^3}{24x^3y^2}\) b/ \(\dfrac{15xy^3\left(x^2-y^2\right)}{20x^2y\left(x+y\right)^2}\)
\(a,\dfrac{21x^2y^3}{24x^3y^2}=\dfrac{7y}{8x}\)
\(b,\dfrac{15xy^3\left(x^2-y^2\right)}{20x^2y\left(x+y\right)^2}=\dfrac{15xy^3\left(x-y\right)\left(x+y\right)}{20x^2y\left(x+y\right)^2}=\dfrac{3y^2\left(x-y\right)}{4x\left(x+y\right)}=\dfrac{3xy^2-3y^3}{4x^2+4xy}\)
a) Ta có: \(\dfrac{21x^2y^3}{24x^3y^2}\)
\(=\dfrac{21x^2y^3:3x^2y^2}{24x^3y^2:3x^2y^2}\)
\(=\dfrac{7y}{8x}\)
Rút gọn các phân thức :
a) \(\dfrac{14xy^5\left(2x-3y\right)}{21x^2y\left(2x-3y\right)^2}\)
b) \(\dfrac{8xy\left(3x-1\right)^3}{12x^3\left(1-3x\right)}\)
c) \(\dfrac{20x^2-45}{\left(2x+3\right)^2}\)
d) \(\dfrac{5x^2-10xy}{2\left(2y-x\right)^3}\)
e) \(\dfrac{32x-8x^2+2x^3}{x^3+64}\)
f) \(\dfrac{9-\left(x+5\right)^2}{x^2+4x+4}\)
g) \(\dfrac{80x^3-125x}{3\left(x-3\right)-\left(x-3\right)\left(8-4x\right)}\)
h) \(\dfrac{5x^3+5x}{x^4-1}\)
i) \(\dfrac{x^2+5x+6}{x^2+4x+4}\)