Phân tích đa thức thành nhân tử
x^4+2021x^2-2020x+2021
Help me ~~~
Phân tích đa thức thành nhân tử
a)x^4-3x^3+4x^2-3x+1
b)x^4+2021x^2-2020x+2021
c)6x^4+5x^3-38x^2+5x+6
Nhanh mk tick
a) \(=x^4-x^3-2x^3+2x^2+2x^2-2x-x+1\)
\(=x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x^3-2x^2+2x-1\right)\left(x-1\right)\)
\(=\left(x^3-x^2-x^2+x+x-1\right)\left(x-1\right)\)
\(=\left(x^2-x+1\right)\left(x-1\right)^2\)
c)
\(=6x^4-12x^3+17x^3-34x^2-4x^2+8x-3x+6\)
\(=6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(6x^3+17x^2-4x-3\right)\left(x-2\right)\)
\(=\left(6x^3+18x^2-x^2-3x-x-3\right)\left(x-2\right)\)
\(=\left(6x^2-x-1\right)\left(x+3\right)\left(x-2\right)\)
\(=\left(2x-1\right)\left(3x+1\right)\left(x+3\right)\left(x-2\right)\)
b)
\(=x^4+1011x^2+1011+\left(1010x^2-2020x+1010\right)\)
\(=x^4+1011x^2+1011+1010\left(x^2-2x+1\right)\)
\(=x^4+1011x^2+1011+1010\left(x-1\right)^2\)
CÓ: \(x^4+1010\left(x-1\right)^2+1011x^2\ge0\forall x\)
=> \(x^4+1010\left(x-1\right)^2+1011x^2+1011\ge1011>0\forall x\)
=> ĐA THỨC b > 0 => Ko ph được thành nhân tử.
phân tích đa thức sau thành nhân tử
x^4-81
\(x^4-81=\left(x^2-9\right)\left(x^2+9\right)=\left(x-3\right)\left(x+3\right)\left(x^2+9\right)\)
\(=\left(x^2-9\right)\left(x^2+9\right)=\left(x-3\right)\left(x+3\right)\left(x^2+9\right)\)
Phân tích đa thức thành nhân tử :
x^4 +2012x^2 + 2021x + 2012
x4+2012x2+2012x+2012
=(x4-x)+(2012x2+2012x+2012)
=x(x3-1)+2012(x2+x+1)
=x(x-1) (x2+x+1) + 2012 (x2+x+1)
=(x2+x+1) [x(x-1)+2012]
=(x2+x+1) (x2-x+2012)
phân tích đa thức thành nhân tử
x mũ 4 + x mũ 2 y mũ 2 cộng y mũ 4
x^4+x^2y^2+y^4
=x^4+2x^2y^2+y^4-x^2y^2
=(x^2+y^2)^2-x^2y^2
=(x^2-xy+y^2)(x^2+xy+y^2)
Phân tích đa thức thành nhân tử
x\(^4\)+2x\(^3\)+10x-25
\(x^4+2x^3+10x-25\)
\(=x^4+5x^2+2x^3+10x-5x^2-25\)
\(=\left(x^2+5\right)\left(x^2+2x-5\right)\)
Phân tích đa thức thành nhân tử
x^2+5x-36
\(x^2+5x-36=\left(x-4\right)\left(x+9\right)\)
Rút gọn:
a) A=(5-2x)2-4x(x-5)
b) B= (4-3x)(4+3x)+(3x+1)2
c) C= (x+1)3-x(x2+3x+3)
d) D=(2021x-2020)2-2(2021x-2020)(2020x-2021)+(2020x-2021)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
mn giúp e vs ạ, e cảm ơn trc ạ
phân tích đa thức thành nhân tử:
x^2+2020x-2021=0
16x-5x^2-3=0
b: \(-5x^2+16x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
\(a,\Leftrightarrow x^2-x+2021x-2021=0\\ \Leftrightarrow\left(x-1\right)\left(x+2021\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2021\end{matrix}\right.\\ b,\Leftrightarrow-5x^2+15x+x-3=0\\ \Leftrightarrow\left(x-3\right)\left(1-5x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
Phân tích đa thức thành nhân tử
x^2-4y^2+x+2y
x2 - 4y2 + x + 2y
= ( x2 - 4y2 ) + ( x + 2y )
= ( x - 2y ) ( x + 2y ) + ( x + 2y )
= ( x + 2y ) ( x - 2y + 1 )