Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thiều Công Thành
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
sunsies
Xem chi tiết
sunsies
20 tháng 3 2019 lúc 0:00

@Akai Haruma, Nguyen, Nguyễn Thị Ngọc Thơsvtkvtm

Akai Haruma
20 tháng 3 2019 lúc 10:27

Bạn tham khảo tại đây:

Câu hỏi của Vũ Sơn Tùng - Toán lớp 9 | Học trực tuyến

Lê Chí Cường
Xem chi tiết
Trần Lâm Thiên Hương
Xem chi tiết
Riio Riyuko
16 tháng 5 2018 lúc 22:18

\(\Sigma\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\Sigma\left(\dfrac{1}{9}.\dfrac{a^2\left(2+1\right)^2}{2a.\left(\Sigma a\right)+2a^2+bc}\right)\le\Sigma\left(\dfrac{1}{9}.\dfrac{4a^2}{2a\left(\Sigma a\right)}+\dfrac{1}{9}.\dfrac{a^2}{2a^2+bc}\right)\)

\(=\Sigma\left(\dfrac{1}{9}.\left(\dfrac{2a}{\Sigma a}+\dfrac{a^2}{2a^2+bc}\right)\right)=\dfrac{1}{9}\left(2+\Sigma\dfrac{a^2}{2a^2+bc}\right)\)

Cần chứng minh \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

<=> \(\Sigma\frac{bc}{2a^2+bc}\ge1\)         (*)

Đặt (x;y;z) ------->  \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)

Suy ra (*)  <=>  \(\Sigma\frac{x^2}{x^2+2xy}\ge1\Leftrightarrow\frac{\Sigma x^2}{\Sigma x^2}\ge1\) (đúng)

Vậy \(\Sigma\frac{a^2}{2a^2+bc}\le1\)

Suy ra \(\Sigma\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}\le\frac{1}{9}\left(2+\Sigma\frac{a^2}{2a^2+bc}\right)\le\frac{1}{9}\left(2+1\right)=\frac{1}{3}\)

Đẳng thức xảy ra <=> x = y = z = 1 

Riio Riyuko
16 tháng 5 2018 lúc 22:19

Nguồn : Trần Thắng

Nguyễn Thu Huyền
Xem chi tiết
Tiến Dũng Trương
18 tháng 1 2017 lúc 22:00

pt 1) x=y=z  Cosi 3 số 

Cố gắng hơn nữa
Xem chi tiết
Thắng Nguyễn
13 tháng 5 2018 lúc 22:59

nhân VT ra rồi dùng cô si là ra 

Cố gắng hơn nữa
13 tháng 5 2018 lúc 23:08

ở nhở :v bị ngáo nhập :v

Cố gắng hơn nữa
14 tháng 5 2018 lúc 12:53

cơ mà hình như k được

Nguyen Duy Dai
Xem chi tiết
Phan Nghĩa
15 tháng 8 2020 lúc 15:47

dễ mà bạn :))) gáy tí , sai thì thôi

\(P=\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{z^3}{\left(1+z\right)\left(1+x\right)}\)

\(=\frac{x^3\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}+\frac{y^3\left(1+x\right)}{\left(1+y\right)\left(1+x\right)\left(1+z\right)}+\frac{z^3\left(1+y\right)}{\left(1+x\right)\left(1+z\right)\left(1+y\right)}\)

\(=\frac{x^3\left(1+z\right)+y^3\left(1+x\right)+z^3\left(1+y\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{3\sqrt[3]{x^3y^3z^3\left(1+x\right)\left(1+y\right)\left(1+z\right)}}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

đến đây áp dụng BĐT phụ ( 1+a ) ( 1+b ) ( 1+c ) >= 8abc 

EZ :)))

Khách vãng lai đã xóa
Nguyen Duy Dai
15 tháng 8 2020 lúc 15:50

nhưng làm thế thì ko bảo toàn đc dấu bất đẳng thức mà

Khách vãng lai đã xóa
FL.Hermit
15 tháng 8 2020 lúc 15:53

TA LẦN LƯỢT ÁP DỤNG BĐT CAUCHY 3 SỐ VÀO TỪNG BDT SAU SẼ ĐƯỢC: 

Có:    \(\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{1+x}{8}+\frac{1+y}{8}\ge3\sqrt[3]{\frac{x^3\left(1+x\right)\left(1+y\right)}{64\left(1+x\right)\left(1+y\right)}}\)

=>      \(\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{1+x}{8}+\frac{1+y}{8}\ge\frac{3x}{4}\)

CMTT TA CŨNG SẼ ĐƯỢC:    \(\hept{\begin{cases}\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(1+z\right)\left(1+x\right)}+\frac{1+z}{8}+\frac{1+x}{8}\ge\frac{3z}{4}\end{cases}}\)

=> TA CỘNG TỪNG VẾ 3 BĐT ĐÓ LẠI SẼ ĐƯỢC:   

\(\Rightarrow P+\frac{1+x}{4}+\frac{1+y}{4}+\frac{1+z}{4}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P+\frac{x+y+z+3}{4}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)-3}{4}\)

TA LẠI ÁP DỤNG BĐT CAUCHY 3 SỐ 1 LẦN NỮA SẼ ĐƯỢC: 

\(\Rightarrow P\ge\frac{2.3\sqrt[3]{xyz}-3}{4}\)

\(\Rightarrow P\ge\frac{2.3-3}{4}=\frac{6-3}{4}=\frac{3}{4}\)      (DO \(xyz=1\))

DẤU "=" XẢY RA <=>    \(x=y=z\)

MÀ:     \(xyz=1\Rightarrow x=y=z=1\)

VẬY P MIN    \(=\frac{3}{4}\Leftrightarrow x=y=z=1\)

Khách vãng lai đã xóa
Phạm Trọng An Nam
Xem chi tiết