Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đinh khánh ngân
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
21 tháng 4 2021 lúc 16:22

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
21 tháng 4 2021 lúc 16:24

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

Khách vãng lai đã xóa
Nguyễn Huy Tú
21 tháng 4 2021 lúc 16:27

Bài 1 : 

\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)

Ta có : \(\left|x-2018\right|\ge0\forall x;\left|x-2019\right|\ge0\forall x;\left|x-2020\right|\ge0\forall x\)

\(\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge0\)

Dấu ''='' xảy ra khi \(x=2018;x=2019;x=2020\)

Vậy GTNN B là 0 khi x = 2018 ; x = 2019 ; x = 2020 

Khách vãng lai đã xóa
Long_0711
Xem chi tiết
Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Nguyễn Văn Trà My
Xem chi tiết
Quỳnh Anh
2 tháng 3 2021 lúc 17:08

Trả lời:

1, A = | x - 3 | + 10 

Vì \(\left|x-3\right|\ge0\forall x\)

nên \(\left|x-3\right|+10\ge10\forall x\)

Dấu = xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTNN của A = 10 khi x = 3

B = -7 + ( x + 1 )2 

Vì \(\left(x+1\right)^2\ge0\forall x\)

nên \(-7+\left(x+1\right)^2\ge-7\forall x\)

Dấu = xảy ra khi x + 1 = 0 <=> x = -1

Vậy GTNN của B = -7 khi x = -1

2, C = -3 - | x + 2 | 

Vì \(\left|x+2\right|\ge0\forall x\)

=> \(-\left|x+2\right|\le0\forall x\)

=> \(-3-\left|x+2\right|\le-3\forall x\)

Dấu = xảy ra khi x + 2 = 0 <=> x = -2

Vậy GTLN của C = -3 khi x = -2

D = 15 - ( x - 2 )2

VÌ \(\left(x-2\right)^2\ge0\forall x\)

=> \(-\left(x-2\right)^2\le0\forall x\)

=> \(15-\left(x-2\right)^2\le15\forall x\)

Dấu = xảy ra khi x - 2 = 0 <=> x = 2

Vậy GTLN của D = 15 khi x = 2

Khách vãng lai đã xóa
Nguyễn thiều bảo trâm
Xem chi tiết
Hoàng Dung Nhi
Xem chi tiết
Lê Thùy Dung
Xem chi tiết
Nguyễn Huệ Lam
28 tháng 6 2017 lúc 16:47

\(M=\text{(x+1)(x-2)(x-3)(x-6)}\)

\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)

\(=\left(x^2-5x\right)^2-6^2=\left(x^2-5x\right)^2-36\ge-36\)( Vì \(\left(x^2-5x\right)^2\ge0\))

Vậy \(MinM=-36\Leftrightarrow\left(x^2-5x\right)^2=0\Leftrightarrow x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)

võ thị thanh huyền
2 tháng 12 2017 lúc 20:13

nỏ hiểu giải thích chữgtnn

Việt Hoàng ( Tiếng Anh +...
18 tháng 9 2018 lúc 20:13

M=(x+1)(x-2)(x-3)(x-6)

=(x2−5x−6)(x2−5x+6)

=(x2−5x)2−62=(x2−5x)2−36≥−36( Vì (x2−5x)2≥0)

Vậy MinM=−36⇔(x2−5x)2=0⇔x2−5x=0⇔x(x−5)=0⇔[

x=0
x−5=0

⇔[

x=0
x=5
 
Phan Thị Thanh Huyền
Xem chi tiết
Kiệt Nguyễn
9 tháng 10 2019 lúc 20:35

a) \(A=5-8x-x^2=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left[\left(x+4\right)^2-21\right]\)

\(=-\left(x+4\right)^2+21\le21\)

Vậy \(A_{max}=21\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

\(B=5x-3x^2=-3\left(x^2-\frac{5}{3}x\right)\)

\(=-3\left(x^2-\frac{5}{3}x+\frac{35}{36}-\frac{25}{36}\right)\)

\(=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{25}{36}\right]\)

\(=-3\left[\left(x-\frac{5}{6}\right)^2\right]+\frac{25}{12}\le\frac{25}{12}\)

Vậy \(B_{min}=\frac{25}{12}\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)

Nguyen Thi Ngan Ha
Xem chi tiết
Phùng Minh Quân
31 tháng 3 2018 lúc 20:13

* Tìm GTNN : 

Ta có : 

\(D=\frac{4x-3}{x+1}=\frac{4x+4-7}{x+1}=\frac{4x+4}{x+1}-\frac{7}{x+1}=\frac{4\left(x+1\right)}{x+1}-\frac{7}{x+1}=4-\frac{7}{x+1}\)

Để D đạt GTNN thì \(\frac{7}{x+1}\) phải đạt GTLN hay \(x+1>0\) và đạt GTNN 

\(\Rightarrow\)\(x+1=1\)

\(\Rightarrow\)\(x=0\)

Suy ra : 

\(D=\frac{4x-3}{x+1}=\frac{4.0-3}{0+1}=\frac{0-3}{1}=\frac{-3}{1}=-3\)

Vậy \(D_{min}=-3\) khi \(x=0\)

Chúc bạn học tốt ~ 

Hoàng Phú Huy
31 tháng 3 2018 lúc 20:19

\(* Tìm GTNN :  Ta có :  \(D=\frac{4x-3}{x+1}=\frac{4x+4-7}{x+1}=\frac{4x+4}{x+1}-\frac{7}{x+1}=\frac{4\left(x+1\right)}{x+1}-\frac{7}{x+1}=4-\frac{7}{x+1}\) Để D đạt GTNN thì \(\frac{7}{x+1}\) phải đạt GTLN hay \(x+1>0\) và đạt GTNN  \(\Rightarrow\)\(x+1=1\) \(\Rightarrow\)\(x=0\) Suy ra :  \(D=\frac{4x-3}{x+1}=\frac{4.0-3}{0+1}=\frac{0-3}{1}=\frac{-3}{1}=-3\) Vậy \(D_{min}=-3\) khi \(x=0\) Chúc bạn học tốt ~ \)

Phùng Minh Quân
1 tháng 4 2018 lúc 10:26

* Tìm GTLN : 

Ta có : 

\(D=\frac{4x-3}{x+1}=4-\frac{7}{x+1}\) ( câu a mình có làm rồi ) 

Để D đạt GTLN thì \(\frac{7}{x+1}\) phải đạt GTNN hay \(x+1< 0\) và đạt GTLN 

\(\Rightarrow\)\(x+1=-1\)

\(\Rightarrow\)\(x=-2\)

Suy ra : 

\(D=\frac{4x-3}{x+1}=\frac{4.\left(-2\right)-3}{-2+1}=\frac{-8-3}{-1}=\frac{-11}{-1}=11\)

Vậy \(D_{max}=11\) khi \(x=-2\)

Chúc bạn học tốt ~ 

Trần Anh Tú
Xem chi tiết