Tìm GTNN của biểu thức sau: 3-|x+1|
bài 1: tìm GTNN của biểu thức sau: B= |x-2018| + |x-2019| + |x-2020|
bài 2: tìm GTNN của biểu thức sau: C= \(\frac{2019}{\sqrt{x}+3}\)
Hộ mình nhaaa :3 camon trước :3
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
Bài 1 :
\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)
Ta có : \(\left|x-2018\right|\ge0\forall x;\left|x-2019\right|\ge0\forall x;\left|x-2020\right|\ge0\forall x\)
\(\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge0\)
Dấu ''='' xảy ra khi \(x=2018;x=2019;x=2020\)
Vậy GTNN B là 0 khi x = 2018 ; x = 2019 ; x = 2020
Tìm GTLN, GTNN của các biểu thức sau và tìm điều kiện của x để biểu thức có GTLN, GTNN:
C=/x+1/+/x+2/+/x+3/+/x+4/+/x+5/
D=/x-1/+/x-2/+/x-3/+....+ /x-2017/
Giúp mk nha !
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
1.Tìm GTNN của các biểu thức sau
A=|x-3|+10
B=-7+(x-1)^2
2.Tìm GTLN của các biểu thức sau
C=-3-|x+2|
D=15-(x-2)^2
Trả lời:
1, A = | x - 3 | + 10
Vì \(\left|x-3\right|\ge0\forall x\)
nên \(\left|x-3\right|+10\ge10\forall x\)
Dấu = xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của A = 10 khi x = 3
B = -7 + ( x + 1 )2
Vì \(\left(x+1\right)^2\ge0\forall x\)
nên \(-7+\left(x+1\right)^2\ge-7\forall x\)
Dấu = xảy ra khi x + 1 = 0 <=> x = -1
Vậy GTNN của B = -7 khi x = -1
2, C = -3 - | x + 2 |
Vì \(\left|x+2\right|\ge0\forall x\)
=> \(-\left|x+2\right|\le0\forall x\)
=> \(-3-\left|x+2\right|\le-3\forall x\)
Dấu = xảy ra khi x + 2 = 0 <=> x = -2
Vậy GTLN của C = -3 khi x = -2
D = 15 - ( x - 2 )2
VÌ \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2\le0\forall x\)
=> \(15-\left(x-2\right)^2\le15\forall x\)
Dấu = xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 15 khi x = 2
tìm GTNN của biểu thức sau x + 9/x-1 +3
Tìm GTNN của biểu thức sau : (x-2)(x-3)(x-6)(x+1)-36
Tìm GTNN của biểu thức sau
M = (x+1)(x-2)(x-3)(x-6)
\(M=\text{(x+1)(x-2)(x-3)(x-6)}\)
\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
\(=\left(x^2-5x\right)^2-6^2=\left(x^2-5x\right)^2-36\ge-36\)( Vì \(\left(x^2-5x\right)^2\ge0\))
Vậy \(MinM=-36\Leftrightarrow\left(x^2-5x\right)^2=0\Leftrightarrow x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)
M=(x+1)(x-2)(x-3)(x-6)
=(x2−5x−6)(x2−5x+6)
=(x2−5x)2−62=(x2−5x)2−36≥−36( Vì (x2−5x)2≥0)
Vậy MinM=−36⇔(x2−5x)2=0⇔x2−5x=0⇔x(x−5)=0⇔[
x=0 |
x−5=0 |
⇔[
x=0 |
x=5 |
1)Tìm GTNN của biểu thức sau
a)A=5-8x-x^2
b)B=5x-3x^2
2)Tìm GTNN của biểu thức:
C=x+2y- căn2x-1 -5 căn4y-3 +13
a) \(A=5-8x-x^2=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left[\left(x+4\right)^2-21\right]\)
\(=-\left(x+4\right)^2+21\le21\)
Vậy \(A_{max}=21\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
\(B=5x-3x^2=-3\left(x^2-\frac{5}{3}x\right)\)
\(=-3\left(x^2-\frac{5}{3}x+\frac{35}{36}-\frac{25}{36}\right)\)
\(=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{25}{36}\right]\)
\(=-3\left[\left(x-\frac{5}{6}\right)^2\right]+\frac{25}{12}\le\frac{25}{12}\)
Vậy \(B_{min}=\frac{25}{12}\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
tìm GTNN và GTLN của biểu thức sau:
D=4x-3/x+1
* Tìm GTNN :
Ta có :
\(D=\frac{4x-3}{x+1}=\frac{4x+4-7}{x+1}=\frac{4x+4}{x+1}-\frac{7}{x+1}=\frac{4\left(x+1\right)}{x+1}-\frac{7}{x+1}=4-\frac{7}{x+1}\)
Để D đạt GTNN thì \(\frac{7}{x+1}\) phải đạt GTLN hay \(x+1>0\) và đạt GTNN
\(\Rightarrow\)\(x+1=1\)
\(\Rightarrow\)\(x=0\)
Suy ra :
\(D=\frac{4x-3}{x+1}=\frac{4.0-3}{0+1}=\frac{0-3}{1}=\frac{-3}{1}=-3\)
Vậy \(D_{min}=-3\) khi \(x=0\)
Chúc bạn học tốt ~
\(* Tìm GTNN : Ta có : \(D=\frac{4x-3}{x+1}=\frac{4x+4-7}{x+1}=\frac{4x+4}{x+1}-\frac{7}{x+1}=\frac{4\left(x+1\right)}{x+1}-\frac{7}{x+1}=4-\frac{7}{x+1}\) Để D đạt GTNN thì \(\frac{7}{x+1}\) phải đạt GTLN hay \(x+1>0\) và đạt GTNN \(\Rightarrow\)\(x+1=1\) \(\Rightarrow\)\(x=0\) Suy ra : \(D=\frac{4x-3}{x+1}=\frac{4.0-3}{0+1}=\frac{0-3}{1}=\frac{-3}{1}=-3\) Vậy \(D_{min}=-3\) khi \(x=0\) Chúc bạn học tốt ~ \)
* Tìm GTLN :
Ta có :
\(D=\frac{4x-3}{x+1}=4-\frac{7}{x+1}\) ( câu a mình có làm rồi )
Để D đạt GTLN thì \(\frac{7}{x+1}\) phải đạt GTNN hay \(x+1< 0\) và đạt GTLN
\(\Rightarrow\)\(x+1=-1\)
\(\Rightarrow\)\(x=-2\)
Suy ra :
\(D=\frac{4x-3}{x+1}=\frac{4.\left(-2\right)-3}{-2+1}=\frac{-8-3}{-1}=\frac{-11}{-1}=11\)
Vậy \(D_{max}=11\) khi \(x=-2\)
Chúc bạn học tốt ~
Tìm GTNN của các biểu thức sau:
a) |x+1|-x+3
b) |x-1|+|x-2|