Cho tam giác ABC, các đường phân giác AD, BE, CF.
CMR : \(S_{DEF}\le\frac{1}{4}S_{ABC}\)
Cho tam giác ABC, các đường phân giác AD, BE, CF. CMR :
\(S_{DEF}\le\frac{1}{4}S_{ABC}\)
Idol nào làm giúp em bài này với ạ
Cho tam giác ABC, các đường phân giác AD, BE, CF cắt các cạnh tam giác.
CMR : \(S_{DEF}\le\frac{1}{4}S_{ABC}\)
BE là tia phân giác của góc B nên \(\frac{AE}{BC}=\frac{AB}{BC}\Rightarrow\frac{AE}{AC}=\frac{AB}{BC+AB}\Rightarrow AE=\frac{bc}{a+c}\)
tương tự \(AE=\frac{bc}{a+b}\) \(\Rightarrow\frac{S_{AEF}}{S}=\frac{AE\cdot AF}{bc}=\frac{bc}{\left(a+c\right)\left(a+b\right)}\)
tương tự \(\frac{S_{BDF}}{S}=\frac{ac}{\left(b+c\right)\left(a+b\right)},\frac{S_{CDE}}{S}=\frac{ab}{\left(a+c\right)\left(c+b\right)}\)
bất đẳng thức cần chứng minh tương đương với \(\frac{S_{AEF}}{S}+\frac{S_{BDF}}{S}+\frac{S_{CDE}}{S}\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{bc}{\left(a+b\right)\left(a+c\right)}+\frac{ca}{\left(b+c\right)\left(b+a\right)}+\frac{ab}{\left(c+a\right)\left(c+b\right)}\ge\frac{3}{4}\)
biến đổi tương đương bất đẳng thức trên ta được \(a^2b+a^2c+b^2c+b^2a+c^2a+c^2b\ge6abc\)
chia 2 vế cho abc ta được \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge6\)
ta có \(\frac{a}{b}+\frac{b}{a}\ge2\)
áp dụng cho 3 cặp số suy ra điều phải chứng minh
dấu "=" xảy ra khi a=b=c hay tam giác ABC đều
Cho tam giác ABC,vẽ 3 đường cao AD,BE,CF.CMR:
\(a)S_{AEF}=S_{ABC}.Cos^2A\\ b)AE.BF.CD=AB.AC.BC.CosA.CosB.CosC\\ c)\frac{S_{DEF}}{S_{ABC}}=1-\left(CosA-CosB-CosC\right)\)
Cho tam giác ABC có độ dài các cạnh a=bc, b=ca, c=ab. Dựng các đường phân giác trong AD, BE, CF. Chứng minh:
1) \(\frac{S_{DFE}}{S_{ABC}}=\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
2) \(S_{DFE}=\frac{S_{ACB}}{4}\)
3) Cho chu vi tam giacsABC là 9 cm. Tìm giá trị lớn nhất của diện tích tam giác DEF
Cho tam giác ABC, 3 đường phân giác AD, BE, CF. Chứng minh rằng:
\(\frac{S_{DEF}}{S_{ABC}}\)= \(\frac{2.AB.AC.BC}{\left(AB+AC\right)\left(AC+BC\right)\left(BC+AB\right)}\)
cho tam giác ABC có 3 phân giác AD, BE , CF .
a. Tính tỉ số \(\frac{S_{EDF}}{S_{BAC}}theoa,b,c\)
b. CMR : \(S_{EDF}\le\frac{1}{4}S_{BAC}\)
Bài 1: Cho tam giác ABC nhọn và 3 đường cao AD, BE, CF. Chứng minh rằng
a/ \(S_{AFE}=S_{ABC}.\cos^2A\)
b/ \(\frac{S_{DEF}}{S_{ABC}}\)\(=1-\left(\cos^2A+\cos^2B+\cos^2C\right)\)
a. Ta có : \(\frac{S_{AEF}}{S_{ABE}}=\frac{AF}{AB};\frac{S_{AEB}}{S_{ABC}}=\frac{AE}{AC}\)
Như vậy \(\frac{S_{AEF}}{S_{ABC}}=\frac{AF}{AB}.\frac{AE}{AC}=\frac{AE}{AB}.\frac{AF}{AC}=cosA.cosA=cos^2A.\)
Từ đó ta có : \(S_{AEF}=S_{ABC}.cos^2A\)
b. Tương tự phần a ta có : \(S_{BEF}=S_{ABC}.cos^2B\); \(S_{CEF}=S_{ABC}.cos^2C\)
Như vậy \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BEF}-S_{CEF}\)
Từ đó ta có: \(\frac{S_{DEF}}{S_{ABC}}=1-\left(cos^2A+cos^2B+cos^2C\right)\)
Chúc em học tốt :)))
Cho tam giác ABC nhọn có các đường cao AD,BE,CF đồng quy tại H.Chứng minh
a) tam giác AEF đồng dạng tam giác ABC,tam giác AFE đồng dạng tam giác DBF
b)\(\frac{S_{ÀEF}}{AH^2}=\frac{S_{BDF}}{BH^2}=\frac{S_{CDE}}{CH^2}\)
a, XÉt Δ AEF và ΔABC
AE/AF=ABAC⇒AE/AB=AF/AC
góc BACchung
=> Δ AEF ∼ ΔABC (đpcm)
b, mk ko hiểu
Cho tam giác ABC có 3 góc nhọn với đường cao AD,BE,CF cắt nhau tại H
a, Cmr : \(\Delta AEF\sim\Delta ABC;\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b, Cmr : \(S_{DEF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
c, Cmr :\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge3\)
a) \(\widehat{BFC}=\widehat{BEC}=90o\) => tứ giác BFEC nội tiếp => \(\widehat{AEF}=\widehat{ABC;}\widehat{AFE}=\widehat{ABC}\)=> \(\Delta AEF~\Delta ABC\)
SAEF = \(\frac{1}{2}AE.AF.sinA\); SABC = \(\frac{1}{2}AB.AC.sinA\)=>\(\frac{S_{AEF}}{S_{ABC}}=\frac{AE.AF}{AB.AC}\)=cos2A (cosA = \(\frac{AE}{AB}=\frac{AF}{AC}\))
b) làm tương tự câu a ta được SBFD=cos2B.SABC; SCED=cos2C.SABC
=> SDEF =SABC-SAEF-SBFD-SCED = (1-cos2A-cos2B-cos2C)SABC