Cho tam giác ABC, các đường phân giác AD, BE, CF. CMR :
\(S_{DEF}\le\frac{1}{4}S_{ABC}\)
Idol nào làm giúp em bài này với ạ
Cho tam giác ABC, các đường phân giác AD, BE, CF cắt các cạnh tam giác.
CMR : \(S_{DEF}\le\frac{1}{4}S_{ABC}\)
Cho tam giác ABC có độ dài các cạnh a=bc, b=ca, c=ab. Dựng các đường phân giác trong AD, BE, CF. Chứng minh:
1) \(\frac{S_{DFE}}{S_{ABC}}=\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
2) \(S_{DFE}=\frac{S_{ACB}}{4}\)
3) Cho chu vi tam giacsABC là 9 cm. Tìm giá trị lớn nhất của diện tích tam giác DEF
Cho tam giác ABC, 3 đường phân giác AD, BE, CF. Chứng minh rằng:
\(\frac{S_{DEF}}{S_{ABC}}\)= \(\frac{2.AB.AC.BC}{\left(AB+AC\right)\left(AC+BC\right)\left(BC+AB\right)}\)
cho tam giác ABC có 3 phân giác AD, BE , CF .
a. Tính tỉ số \(\frac{S_{EDF}}{S_{BAC}}theoa,b,c\)
b. CMR : \(S_{EDF}\le\frac{1}{4}S_{BAC}\)
Bài 1: Cho tam giác ABC nhọn và 3 đường cao AD, BE, CF. Chứng minh rằng
a/ \(S_{AFE}=S_{ABC}.\cos^2A\)
b/ \(\frac{S_{DEF}}{S_{ABC}}\)\(=1-\left(\cos^2A+\cos^2B+\cos^2C\right)\)
Cho tam giác ABC có 3 góc nhọn với đường cao AD,BE,CF cắt nhau tại H
a, Cmr : \(\Delta AEF\sim\Delta ABC;\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b, Cmr : \(S_{DEF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
c, Cmr :\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge3\)
Cho tam giác nhọn ABC. Đường cao AD, BE, CF. R là bán kính đường tròn ngoại tiếp \(\Delta\)ABC.
a) Chứng minh: \(OA⊥EF\)
b) Gọi P là chu vi \(\Delta\)DEF. Chứng minh: \(S_{ABC}\le\frac{P^2+R^2}{4}\)
Cho tam giác ABC có ba góc nhọn với các đường cao AD, BE, CF cắt nhau tại H.
a)CMR:
Tam giác AEF đồng dạng với tam giác ABC. \(\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b)CMR:\(S_{DÈF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right)S_{ABC}\)
c)Cho biết AH=k.HD. CMR: \(\tan B.\tan C=k+1\)
d)CMR:\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)