Không dùng máy tính, hãy so sánh:
1/ √11−√2 và √14−√5
2/ √5+√7 và 2√6
3/ √2016+√2018 và 2√2017
Không dùng máy tính hãy so sánh A=10^2016+2018/10^2017+2018 và B=10^2017+2018/10^2018+2018
Ta có: \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)\(\Rightarrow10A=\frac{10^{2017}+2018.10}{10^{2017}+2018}=\frac{10^{2017}+2018+2018.9}{10^{2017}+2018}=1+\frac{2018.9}{10^{2017}+2018}\)
Tương tự ta có: \(10B=1+\frac{2018.9}{10^{2018}+2018}\)
Vì \(2017< 2018\)\(\Rightarrow10^{2017}< 10^{2018}\)\(\Rightarrow10^{2017}+2018< 10^{2018}+2018\)
\(\Rightarrow\frac{2018.9}{10^{2017}+2018}>\frac{2018.9}{10^{2018}+2018}\)\(\Rightarrow1+\frac{2018.9}{10^{2017}+2018}>1+\frac{2018.9}{10^{2018}+2018}\)
hay \(10A>10B\)\(\Rightarrow A>B\)
Vậy \(A>B\)
Ta có : \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}=\frac{10^{2017}+2018+18162}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\)
Ta có : \(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)
\(\Rightarrow\frac{10^{2018}+20180}{10^{2018}+2018}=\frac{10^{2018}+2018+18162}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\)
Vì \(10^{2017}+2018< 10^{2018}+2018\) nên \(\frac{18162}{10^{2017}+2018}>\frac{18162}{10^{2018}+2018}\)
\(\Rightarrow1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2017}+2018}\Rightarrow10A>10B\Rightarrow A>B\)
Vậy A > B
Làm khác bạn kia 1 xíu à
Không dùng máy tính, hãy so sánh \(\sqrt{2017}-\sqrt{2016}\) và \(\sqrt{2016}-\sqrt{2015}\)
\(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2017}+\sqrt{2016}}\)
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
2017>2015
=>căn 2017>căn 2015
=>\(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}+\sqrt{2015}\)
=>\(\dfrac{1}{\sqrt{2017}+\sqrt{2016}}< \dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
=>\(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}-\sqrt{2015}\)
Ko dùng máy tính hãy so sánh 2016/2017+2017/2018+2018/2019+2019/2016 với 4
Không dùng máy tính, so sánh \(\sqrt{2016}-\sqrt{2017}\)và \(\sqrt{2017}-\sqrt{2018}\)
Ta có:
\(\sqrt{2016}-\sqrt{2017}=\frac{\left(\sqrt{2016}-\sqrt{2017}\right)\left(\sqrt{2016}+\sqrt{2017}\right)}{\sqrt{2016}+\sqrt{2017}}\)
\(=\frac{2016-2017}{\sqrt{2016}+\sqrt{2017}}=-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)
\(\sqrt{2017}-\sqrt{2018}=\frac{\left(\sqrt{2017}-\sqrt{2018}\right)\left(\sqrt{2017}+\sqrt{2018}\right)}{\sqrt{2017}+\sqrt{2018}}\)
\(=\frac{2017-2018}{\sqrt{2017}+\sqrt{2018}}=-\frac{1}{\sqrt{2017}+\sqrt{2018}}\)
Ta thấy rằng:
\(\sqrt{2018}>\sqrt{2016}\)
\(\Leftrightarrow\sqrt{2017}+\sqrt{2018}>\sqrt{2016}+\sqrt{2017}\)
\(\Leftrightarrow\frac{1}{\sqrt{2017}+\sqrt{2018}}< \frac{1}{\sqrt{2016}+\sqrt{2017}}\)
\(\Leftrightarrow-\frac{1}{\sqrt{2017}+\sqrt{2018}}>-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)
Vậy \(\sqrt{2017}-\sqrt{2018}>\sqrt{2016}-\sqrt{2017}\)
1: so sánh 2016/2017+2017/2018 với 1
2:tính: a)2/2017+2/2018 trên 5/2017+5/2018
b) -5/7.3/11+5/-7-8/11+3 và 5/7
ai làm nhanh mình tick nha mình đang cần gấp mình sẽ nhờ các bạn khác tick nếu các bạn làm đúng nha
1: so sánh 2016/2017+2017/2018
vì 2016/2017 > 1/2017 >1/2018 =
> 2016/2017+2017/2018 >1/2018+2017/2018=1
vậy .....
bạn làm đúng rồi nhưng mình cần 2 bài
2.a)2/2017+2/2018 trên 5/2017+5/2018
=2*(1/2017+1/2018) trên 5*(1/2017+1/2018)
=2/5
Câu b của bn mình ko hiểu cho lắm. Chữ "và" ở đây nghĩa là gì vậy?
so sánh a và b biết a=2016/2017+2017/2018+2018/2019+2019/2016 và b=1/8+1/9+1/10+...+1/63
Bài 1 : Tính nhanh
a) 6/15 + 6/35 + 6/63 + 6/99 + 6/143
b) 3/24 + 3/48 + 3/80 + 3/120 + 3/168
Bài 2 : So sánh các phân số sau
a) 2/3 và 5/6 b) 1/4 và 151515/101010 c) 2017/2016 và 2017/2018 d) 2014/2015 và 2015/2016
Bài 3 : So sánh
B = 1/51 + 1/52 + ..... + 1/99 + 1/100 và 1/2
Giải bài giải đầy đủ giúp mình nhé
1.
a) \(\frac{6}{15}+\frac{6}{35}+\frac{6}{63}+\frac{6}{99}+\frac{6}{143}\)
\(=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+\frac{6}{9.11}+\frac{6}{11.13}\)
\(=\frac{6}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{6}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{6}{2}.\frac{10}{39}\)
\(=\frac{10}{13}\)
b) \(\frac{3}{24}+\frac{3}{48}+\frac{3}{80}+\frac{3}{120}+\frac{3}{168}\)
\(=\frac{3}{4.6}+\frac{3}{6.8}+\frac{3}{8.10}+\frac{3}{10.12}+\frac{3}{12.14}\)
\(=\frac{3}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+...+\frac{1}{12}-\frac{1}{14}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{4}-\frac{1}{14}\right)\)
\(=\frac{3}{2}.\frac{5}{28}\)
\(=\frac{15}{56}\)
\(a.\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{11.13}\)
\(=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=3.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=3.\frac{10}{39}\)
\(=\frac{10}{13}\)
\(a.\frac{6}{15}+\frac{6}{35}+\frac{6}{63}+\frac{6}{99}+\frac{6}{143}\)
\(=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+\frac{6}{9.11}+\frac{6}{11.13}\)
\(=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=3.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=3.\frac{10}{39}\)
\(=\frac{10}{13}\)
không quy đồng phân số hãy so sánh 2 phân số sau: 2017/ 2018 và 2016/2017 giúp mình với
không quy đồng phân số hãy so sánh 2 phân số sau: 2017/ 2018 và 2016/2017
Ta so sánh 1/2018 và 1/2017
1/2018<1/2017
=> 2017/2018>2016/2017
\(\text{Ta có :}\)
\(\frac{2017}{2018}=1-\frac{1}{2018}\)
\(\frac{2016}{2017}=1-\frac{1}{2017}\)
\(\text{Vì }\frac{1}{2018}< \frac{1}{2017}\Rightarrow1-\frac{1}{2018}>1-\frac{1}{2017}\)
\(\Rightarrow\frac{2016}{2017}< \frac{2017}{2018}\)
So sánh: A = 7^2018 + 2 / 7^2017 + 2 và
B = 7^2017+2 / 7^2016 + 2