Tìm x , biết :
(4x - 1)2 - (4x + 1) . (x - 2) = 12
Tìm x , biết :
(4x - 1)2 - (4x + 1) . (x - 2) = 12
\(\left(4x-1\right)^2-\left(4x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow\left(4x-1\right)\left(4x-1-x+2\right)=12\)
\(\Leftrightarrow\left(4x-1\right)\left(3x+1\right)=12\)
Rồi bạn tự tính tiếp nhớ :3
Học tốt
\(\left(4x-1\right)^2-\left(4x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow16x^2-8x+1-4x^2+8x-x+2=12\)
\(\Leftrightarrow12x^2-x-9=0\)( vô nghiệm )
Bài 1: Tìm x biết a) x^3 - 4x^2 - x + 4= 0 b) x^3 - 3x^2 + 3x + 1=0 c) x^3 + 3x^2 - 4x - 12=0 d) (x-2)^2 - 4x +8 =0
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Tìm x , biết :
(4x - 1)2 - (4x + 1) . (x - 2) = 12
pt <=> \(16x^2-8x+1-\left(4x^2-7x-2\right)=12\)
<=> \(12x^2-x+3=12\)
<=> \(12x^2-x-9=0\)
=> Bạn bấm máy tính tìm nốt x nha
( 4x - 1 )2 - ( 4x + 1 )( x - 2 ) = 12
<=> 16x2 - 8x + 1 - ( 4x2 - 7x - 2 ) = 12
<=> 16x2 - 8x + 1 - 4x2 + 7x + 2 = 12
<=> 12x2 - x + 3 = 12
<=> 12x2 - x + 3 - 12 = 0
<=> 12x2 - x - 9 = 0
\(\Delta=b^2-4ac=\left(-1\right)^2-4\cdot12\cdot\left(-9\right)=1+432=433\)( lại không muốn xài Delta đâu nhưng bí quá ;-; )
\(\Delta>0\)nên phương trình đã cho có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+\sqrt{433}}{2\cdot12}=\frac{1+\sqrt{433}}{24}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{1-\sqrt{433}}{2\cdot12}=\frac{1-\sqrt{433}}{24}\end{cases}}\)
Tìm x , biết :
a. (4x - 1) - (4x + 1) . (x - 2) = 12
b.(2x - 3) . (2x + 1) - (2x - 2)2 = 15
a.\(\left(4x-1\right)-\left(4x+1\right).\left(x-2\right)=12\)
\(\Leftrightarrow4x-1-\left(4x^2-7x-2\right)-12=0\)
\(\Leftrightarrow4x-1-4x^2+7x+2-12=0\)
\(\Leftrightarrow-4x^2+11x-11=0\)
\(\Rightarrow4x^2-11x+11=0\)
\(\Leftrightarrow\left(2x\right)^2-2.2x.\frac{11}{4}+\frac{11^2}{4^2}-\frac{11^2}{4^2}+11=0\)
\(\Leftrightarrow\left(2x-\frac{11}{4}\right)^2+\frac{55}{16}=0\)( VÔ LÝ )
VẬY KHÔNG CÓ GIÁ TRỊ NÀO CỦA x THỎA MÃN PT ĐÃ CHO
b. \(\left(2x-3\right).\left(2x+1\right)-\left(2x-2\right)^2=15\)
\(\Leftrightarrow4x^2-4x-3-4x^2+8x-4-15=0\)
\(\Leftrightarrow4x-22=0\)\
\(\Leftrightarrow x=\frac{11}{2}\)
VẬY PT CÓ NGHIỆM x= 11/2
Tìm x , biết :
a. (4x - 1) - (4x + 1) . (x - 2) = 12
b.(2x - 3) . (2x + 1) - (2x - 2)2 = 15
a) \(\left(4x-1\right)-\left(4x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow4x-1-\left(4x^2-7x-2\right)=12\)
\(\Leftrightarrow4x-1-4x^2+7x+2=12\)
\(\Leftrightarrow4x^2-11x+11=0\)( Pt vô nghiệm )
b) \(\left(2x-3\right)\left(2x+1\right)-\left(2x-2\right)^2=15\)
\(\Leftrightarrow\left(4x^2-4x-3\right)-\left(4x^2-8x+4\right)=15\)
\(\Leftrightarrow4x=22\)
\(\Leftrightarrow x=\frac{11}{2}\)
Tìm x , biết :
a. (4x - 1) - (4x + 1) . (x - 2) = 12
b.(2x - 3) . (2x + 1) - (2x - 2)2 = 15
(4x - 1) - (4x + 1)(x - 2) = 12
=> 4x - 1 - 4x2 - 7x - 2 = 12
=> (4x - 7x) + (- 1 - 2) - 4x2 = 12
=> -3x - 3 - 4x2 = 12
=> -3x - 4x2 = 15
=> không tồn tại x
b. (2x - 3)(2x + 1) - (2x - 2)(2x - 2) = 15
=> 2x(2x + 1) - 3(2x + 1) - 2x(2x - 2) + 2(2x - 2) = 15
=> 4x2 + 2x - 6x - 3 - 4x2 + 4x - 4x - 4 = 15
=> (4x2 - 4x2) + (2x - 6x + 4x - 4x) + (-3 - 4) = 15
=> -4x - 7 = 15
=> -4x = 22
=> x = \(-\frac{11}{2}\)
a, \(\left(4x-1\right)-\left(4x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow4x-1-4x^2+8x-x+2=12\)
\(\Leftrightarrow11x+1-4x^2=12\)
\(\Leftrightarrow11x-11-4x^2=0\)( vô nghiệm )
b, \(\left(2x-3\right)\left(2x+1\right)-\left(2x-2\right)^2=15\)
\(\Leftrightarrow4x^2+2x-6x-3-4x^2+8x-4=15\)
\(\Leftrightarrow4x-7=15\Leftrightarrow4x=22\Leftrightarrow x=\frac{11}{2}\)
Ây da,làm lại câu b nè
b. (2x - 3)(2x + 1) - (2x - 2)(2x - 2) = 15
=> 2x(2x + 1) - 3(2x + 1) - 2x(2x - 2) + 2(2x - 2) = 15
=> 4x2 + 2x - 6x - 3 - 4x2 + 4x + 4x - 4 = 15
=> (4x2 - 4x2) - (2x - 6x + 4x + 4x) + (-3 - 4) = 15
=> 4x - 7 = 15
=> 4x = 22
=> x = 11/2
Bài 1 ;Tìm x biết
1) (2x+1 )^3 - (2x+1)(4x^2-2x+1)-3(2x-1)=15
2) x(x-4)(x+4)-(x-5)(x^2 + 5x +25)=13
Bài 2 : Cmr các giá trị của biểu thức sau không thuộc vào giá ttij của biến :
A= (x+5)(x^2-5x+25)-(2x+1)^3-28x^3+3x(-11x+5)
B = (3x+2)^3 - 18x(3x+2)+(x-1)^3-28^3+3x(x-1)
C= (4x-1)(16x^2+4x+1)-(4x+1)^3+12(4x+1)^3+12(4x+1)-15
Tính giúp mình ạ ! Cảm ơn các cậu rất nhieeufuuuu :3
Bài 1.
1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15
<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15
<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15
<=> 12x2 + 15 = 15
<=> 12x2 = 0
<=> x = 0
2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13
<=> x( x2 - 16 ) - ( x3 - 53 ) = 13
<=> x3 - 16x - x3 + 125 = 13
<=> 125 - 16x = 13
<=> 16x = 112
<=> x = 7
Bài 2.
A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )
= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x
= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x
= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )
B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x3 + 3x( x - 1 )
= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x
= 7 ( đpcm )
C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15
= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15
= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15
= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]
= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )
= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )
= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )
= 64x3 - 16 + 704x3 + 528x2 + 180x + 23
= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )
1, tìm x,biết
a, 15-2*(3x-6)= -2*(4x+12)-2x-16
b,18-x-3(2x+6)=4x-5(6-x)
Tìm x : a) x^3 - 1/4x = 0 b) ( 2x - 1 )^2 - ( x + 3 )^2=0 c) x^2(x-3)+12-4x=0
a) \(x^3\)\(-\)\(\frac{1}{4}x\)\(=\)\(0\)
\(x\left(x^2-\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x^2-\frac{1}{4}=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x^2=0,5^2\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=+-0,5\end{cases}}\)
Vậy .............................
b) \(\left(2x-1\right)^2\)\(-\)\(\left(x+3\right)^2\)\(=\)\(0\)
\(\left(2x-1+x+3\right)\left(2x-1-x-3\right)=0\)
\(\left(3x+2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+2=0\\x-4=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-2\\x=4\end{cases}}\)\(\orbr{\begin{cases}x=\frac{-2}{3}\\x=4\end{cases}}\)
Vậy ................................
c) \(x^2\)\(\left(x-3\right)\)\(+\)\(12\)\(-\)\(4x\)\(=\)\(0\)
\(x^2\)\(\left(x-3\right)\)\(-\)\(4\)\(\left(x-3\right)\)\(=\)\(0\)
\(\left(x^2-4\right)\left(x-3\right)\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2\\x-3=0\end{cases}-4=0}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2\\x=3\end{cases}=2^2}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=+-2\\x=3\end{cases}}\)
a)\(x^3-\frac{1}{4}x=0\)
\(\Leftrightarrow x\left(x^2-\frac{1}{4}\right)=0\)
\(\Leftrightarrow x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}}\)
b)\(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-\frac{2}{3}\end{cases}}}\)