Tính nhanh:
a) 2001 x 757 + 2002 x 233=
b) ( m: 1 - m x 1) : ( m x 2001 + m + 1 ) =
Tính nhanh (trình bày cách tính):
a) 2001 x 767 + 2002 x 233
b) (m : 1 - m x 1) : (m x 2001 + m + 1 )
a) 2001 x 767 + 2002 x 233
= 2002 x 767 – 767 + 2002 x 233
= 2002 x (767+ 233) – 767
= 2002 x 1000 – 767
= 2002000 – 767
= 2001233
b) (m : 1 – m x 1) : (m x 2001 + m + 1)
= (m – m) : (m x 2001 + m + 1)
= 0 : (m x 2001 + m + 1)
= 0
- HT_ #lie -
1) So sánh :
A = 2000/2001 + 2001/2002 và B = 2000+2001/2001+2002
2) Tìm cặp x,y thuộc Z, biết :
5/x + y/4 = 1/8
2) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
Vì \(1-2y\) luôn là số lẻ nên \(1-2y\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow y=\left\{0;1;-2;3\right\}\)
\(\Rightarrow x\in\left\{40;-40;8;-8\right\}\)
Vậy các cặp số x,y thỏa mãn là \(\left(0;40\right);\left(1;-40\right);\left(-2;8\right);\left(3;-8\right)\)
Ta có :
\(B=\dfrac{2000+2001}{2001+2002}=\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}\)
Mặt khác :
\(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)
\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)
\(\Leftrightarrow A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}=\dfrac{2000+2001}{2001+2002}=B\)
\(\Leftrightarrow A>B\)
Ta có: B =20002001+2002 +20012001+2002
Mặt khác: 20002001 >20002001+2002
20012002 >20012001+2002
Suy ra 20002001 +20012002 >20002001+2002 +20012001+2002
hay A> B
Vậy A > B.
Tìm x biết:(x-1)/2004+(x-2)/2003=(x-3)/2002+(x-4)/2001
- Ta có : \(\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)
=> \(\frac{x-1}{2004}-1+\frac{x-2}{2003}-1=\frac{x-3}{2002}-1+\frac{x-4}{2001}-1\)
=> \(\frac{x-2005}{2004}+\frac{x-2005}{2003}=\frac{x-2005}{2002}+\frac{x-2005}{2001}\)
=> \(\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)
=> \(\left(x-2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
=> \(x-2005=0\)
=> \(x=2005\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{2005\right\}\)
Tìm x biết :
\(\dfrac{x+1}{2000}+\dfrac{x+3}{2001}+=\dfrac{x+2}{2002}+\dfrac{x+1}{2002}\)
Sửa đề: \(\dfrac{x+1}{2000}+\dfrac{x+2}{1999}=\dfrac{x+3}{1998}+\dfrac{x+4}{1997}\)
\(\Rightarrow\left(\dfrac{x+1}{2000}+1\right)+\left(\dfrac{x+2}{1999}+1\right)=\left(\dfrac{x+3}{1998}+1\right)+\left(\dfrac{x+4}{1997}+1\right)\)
\(\Rightarrow\dfrac{x+2001}{2000}+\dfrac{x+2001}{1999}=\dfrac{x+2001}{1998}+\dfrac{x+2001}{1997}\)
\(\Rightarrow\dfrac{x+2001}{2000}+\dfrac{x+2001}{1999}-\dfrac{x+2001}{1998}-\dfrac{x+2001}{1997}=0\)
\(\Rightarrow\left(x+2001\right)\left(\dfrac{1}{2000}+\dfrac{1}{1999}-\dfrac{1}{1998}-\dfrac{1}{1997}\right)=0\)
\(\dfrac{1}{2000}+\dfrac{1}{1999}-\dfrac{1}{1998}-\dfrac{1}{1997}\ne0\Leftrightarrow x+2001=0\Leftrightarrow x=-2001\)
2001 x 767 + 2002 x 233 TÍNH NHANH
=2001*(767+233)*2002
=2001*1000*2002
=4006002000
nha! sao bạn ko thay số 2001=2002 hoặc thay 2002=2001 để cho dễ tính hơn?
chúc bạn học giỏi
2001*( 767 + 233) + 2002
=2001 * 1000 + 2002
= 2001 * 3002
= 6007002
chúc bạn học tốt
2001 x 767 + 2002 x 233 = 1534767 + 466466
= 2001233
tìm x
a, x+1/10 + x+1/11 + x+1/12 = x+1/13 + x+1/14
b, x+4/2000 + x+3/2001 = x+2/2002 + x+1/2003
Tìm x biết :
x-1/2004+x-2/2003-x-3/2002=x-4/2001
Tìm x
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\\ \Leftrightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\\ \Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\\ \Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\\ \Leftrightarrow x+2004=0\\ \Leftrightarrow x=-2004\)
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\). Tìm x
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Rightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)
\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\)
\(\Rightarrow x=-2004\)
Vậy x = -2004
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)
\(\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)
\(\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
=> x+2004=0 => x=-2004