cho a,b,c là 3 số tự nhiên thỏa mãn
(a+b+c)chia hết cho 2
chứng tỏ rằng
(a^2+b^2+c^2)chia hết cho 2
Cho các số tự nhiên >0 là a, b, c, d, e thỏa mãn tính chất a^2+b^2+c^2+d^2+e^2 là một số chia hết cho 2
Chứng tỏ rằng a+b+c+d+e là hợp số
Ta có :
\(\left[\left(a+b\right)+\left(c+d\right)+e\right]^2\)
\(=\left(a+b\right)^2+\left(c+d\right)^2+e^2+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)
\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2ab+2cd+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)
\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)
Do \(2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)chia hết cho 2 và \(\left(a^2+b^2+c^2+d^2+e^2\right)\)chia hết cho 2 nên \(\left(a+b+c+d+e\right)^2\)chia hết cho 2
\(\Rightarrow a+b+c+d+e\)chia hết cho 2
Đồng thời có \(a+b+c+d+e>2\)( Bắt buộc )
\(\Rightarrow\)a+b+c+d+e là hợp số
Bài này mình nhóm 3 số lại để trở thành hẳng đẳng thức đơn giản cho bạn dễ hiểu.
em lớp 6 nhìn bài giảng của chị CTV hoa hết cả mắt chẳng hiểu chi nổi.
em xin trình bày cách của em lập luận có gì thiếu sót chị chỉ bảo .
a^2+b^2+c^2+d^2+e^2 chia hết cho 2
* nếu a,b,c,d,e đều chẵn => hiển nhiên A=(a+b+c+d+e) là hợp số vì a,b,c,d,e>0
*nếu trong số (a,b,c,d,e) có số lẻ bình phương số lẻ là một số lẻ vậy do vậy số các con số lẻ phải chẵn
như vậy a+b+c+d+e cũng là một số chắn
mà a,b,c,d,e>0 do vậy a+b+c+d+e khác 2 vậy a+b+c+d+e=2k với k khác 1 => dpcm.
( ở đây em chỉ cần khác 2 loại số nguyên tố chẵn ) thực tế a+b+c+d+e >6)
chị @ trân thuy dung giải rất công phu nhưng đúng là không hay bằng @nvh đơn giản dẽ hiểu
*a+b+c+d+e >2 (bắt buộc) nghe nó bị gò bó có cái gì đó thiếu logic toán học dẫn đến vẫn có thể đặt câu hỏi vì sao?
*a+b+c+d+e khác 2 -- chỉ cần khác 2 là đủ Hay!!!!
cho các số tự nhiên a,b,c thỏa mãn a2+b2+c2=2015. chứng minh rằng tích abc chia hết cho 3 nhưng không chia hết cho 12
Bài 1: Biểu thức sau có chia hết cho 3 không? Vì sao?
4a + 1 (biết rằng a là số tự nhiên chia cho 3 dư 2).
Bài 2: Tìm x ∈ N sao chi
a) 36 chia hết cho 3x + 1
b) 2x + 9 chia hết cho x + 2
Bài 3: Cho các số tự nhiên a và b thỏa mãn a + 2b chia hết cho 9. Chứng minh rằng các biểu thức sau cũng chia hết cho 9.
a) a + 11b
b) a + 38b
c) a - 7b (với a > b)
d) b. 10n + 6b - a trong đó n ∈ N và b > a.
1: a chia 3 dư 2 nên a=3k+2
4a+1=4(3k+2)+1
=12k+8+1
=12k+9=3(4k+3) chia hết cho 3
2:
a: 36 chia hết cho 3x+1
=>\(3x+1\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
mà x là số tự nhiên
nên 3x+1 thuộc {1;4}
=>x thuộc {0;1}
b: 2x+9 chia hết cho x+2
=>2x+4+5 chia hết cho x+2
=>5 chia hết cho x+2
=>x+2 thuộc {1;-1;5;-5}
=>x thuộc {-1;-3;3;-7}
mà x thuộc N
nên x=3
1.Cho bốn số nguyên dương a,b,c,d thỏa mãn ab=cd.Chứng minh rằng \(a^5+b^5+c^5+d^5\)là hợp số.
2.Cho các số tự nhiên a và b.Chứng minh rằng:
a, Nếu\(a^2+b^2\)chia hết cho 3 thì a và b chia hết cho 3.
b, Nếu\(a^2+b^2\)chia hết cho 7 thì a và b chia hết cho 7.
3.Cho các số nguyên a,b,c.Chứng minh rằng:
a, Nếu a+b+c chia hết cho 6 thì \(a^3+b^3+c^3\)chia hết cho 6.
b, Nếu a+b+c chia hết cho 30 thì \(a^5+b^5+c^5\)chia hết cho 30
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
3. a) Xét hiệu \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮2.3=6\)( tích của 3 số nguyên liên tiếp)
Tương tự: \(b^3-b⋮6\)và \(c^3-c⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\Rightarrow a^3+b^3+c^3⋮6\Leftrightarrow a+b+c⋮6\)
b) Ta có: \(30=2.3.5\)và 2,3,5 đôi một nguyên tố cùng nhau.
Theo định lý Fermat: \(a^2\equiv a\left(mod2\right)\Rightarrow a^4\equiv a^2\equiv a\left(mod2\right)\Rightarrow a^5\equiv a^2\equiv a\left(mod2\right)\)
\(a^3\equiv a\left(mod3\right)\Rightarrow a^5\equiv a^3\equiv a\left(mod3\right)\)
\(a^5\equiv a\left(mod5\right)\)
Theo tính chất của phép đồng dư, ta có:
\(a^5+b^5+c^5\equiv a+b+c\left(mod2\right)\)
\(a^5+b^5+c^5\equiv a+b+c\left(mod3\right)\)
\(a^5+b^5+c^5\equiv a+b+c\left(mod5\right)\)
Do đó: \(a^5+b^5+c^5\equiv a+b+c\left(mod2.3.5\right)\). Tức là nếu a+b+c chia hết cho 30 thì ....(đpcm)
Các số tự nhiên a,b,c thỏa mãn a^2+b^2=c^2. CMR
a} a.b.c chia hết cho 3
b} a.b.c chia hết cho 5
a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3.
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí)
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3
b) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5.
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4.
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí)
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5.
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí).
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5
Cho các số tự nhiên a,b,c thỏa mãn a2 +b2 =c2
Chứng minh rằng : a, a x b x c chia hết cho 3
b, abc chia hết cho 5
P/S: abc là 1 số có 3 chữ số
Cho 3 số tự nhiên: a,b,c thỏa mãn: a2 - b2 = c2. Chứng minh rằng (abc -6bc) chia hết cho 3.
Ta có:
+) a2=3k=> abc chia hết cho 3=>abc-6bc chia hết cho 3 (k e N)
với TH ko số nào chia 3 dư 1
+) a bình : 3(dư 1)=>a2-b2=c2 trong đó c chia hết cho 3 nên abc-6bc vẫn như thé chia hết cho 3
(ĐPCMA)
Cho a, b , c là các số tự nhiên thỏa mãn a + b + c = 2016. Chứng minh rằng a3 + b3 + c3 chia hết cho 2 và 3
+) Chứng minh a3 - a luôn chia hết cho 2 và 3 với mọi số tự nhiên a:
a3 - a = a.(a2 -1) = a.(a - 1).(a+1)
Vì a- 1; a ; a+ 1 là 3 số tự nhiên liên tiếp nên tích (a-1).a.(a+1) luôn chia hết cho 2 và 3
+) khi đó , với mọi số tự nhiên a; b;c ta có: (a3 -a) + (b3 -b) + (c3 - c) luôn chia hết cho cả 2 và 3
=> (a3 + b3 + c3) - (a + b + c) luôn chia hết cho cả 2 và 3
=> (a3 + b3 + c3) - 2016 luôn chia hết cho cả 2 và 3. mà 2016 chia hết cho 2 và 3 nên (a3 + b3 + c3) chia hết cho cả 2 và 3
Vậy...
cho a,b,c là 3 số tự nhiên thoả mãn a + b +c chia hết cho 2 chứng minh a^2 + b^2 +c^2 chia hết cho 2
Ta có: a + b + c \(⋮\)2
Vì các số có số mũ là 2 thì luôn là số chẵn => luôn chia hết cho 2.
Nên: a2 \(⋮\)2; b2 \(⋮\)2; c2 \(⋮\)2.
Mà cả a2, b2, c2 đều chia hết cho 2 nên a2 + b2 + c2 \(⋮\)2
( Nếu ko đúng thì thôi nhá, mình chỉ nghĩ là như zậy thoi ) :(((