Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dragon Boy
Xem chi tiết
PHAM THANH THUONG
Xem chi tiết
~Tiểu Hoa Hoa~
Xem chi tiết
Đặng Ngọc Quỳnh
24 tháng 9 2020 lúc 19:51

1) \(VT=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)\(=\frac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}=VP\)(ĐPCM)

2) \(VT=\text{[}\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a+b-\sqrt{ab}\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\text{]}.\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)

\(=\frac{\left(a+b-\sqrt{ab}-\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}=\frac{\left(a-b\right)^2}{\left(a-b\right)^2}=1=VP\)(ĐPCM)

4) \(VT=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a=VP\)(ĐPCM)

Khách vãng lai đã xóa
Pham Thanh Thuong
Xem chi tiết
Ichigo Hoshimiya
Xem chi tiết
Phuong Anh
Xem chi tiết
Miinhhoa
11 tháng 8 2020 lúc 9:08

A= \(\left(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-b}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)

A = \(\left(\frac{\sqrt{b}}{\sqrt{a}.\sqrt{a}-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-\sqrt{b}.\sqrt{b}}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)

A = \(\left(\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)

A = \(\left(\frac{b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)

A = \(\left(\frac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(\sqrt{a}.\sqrt{a}.\sqrt{b}-\sqrt{b}.\sqrt{b}\sqrt{a}\right)\)

A = \(\left(\frac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\right)\)

A = b-a

B = \(\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}}{a-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-1}\)

B = \(\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{a-1}-\frac{\sqrt{a}\left(a+\sqrt{a}\right)}{a^2-a}\right).\frac{a-1}{\sqrt{a}+1}\)

B = \(\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{a-1}-\frac{\sqrt{a}.\sqrt{a}\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)

\(B=\left(\frac{a\sqrt{a}\left(\sqrt{a}+1\right)}{a\left(a-1\right)}-\frac{a\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)

B= \(\left(\frac{a\sqrt{a}\left(\sqrt{a}+1\right)-a\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)

B= \(\left(\frac{\left(\sqrt{a}+1\right)\left(a\sqrt{a}-a\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)

B = \(\frac{\left(\sqrt{a}+1\right)a\left(\sqrt{a}-1\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)

\(B=\frac{a\left(\sqrt{a}^2-1^2\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)

\(B=\frac{a\left(a-1\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)

B = \(\frac{a-1}{\sqrt{a}+1}\)

Dragon Boy
Xem chi tiết

\(A=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\left(a>0;a\ne1\right)\)

\(A=\frac{\sqrt{a}.\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}-1\right)+2}{a-1}\)

\(A=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{a-1}\)

\(A=\frac{\sqrt{a}+1}{\sqrt{a}}:\frac{1}{\sqrt{a}-1}\)

\(A=\frac{\sqrt{a}+1}{\sqrt{a}}.\left(\sqrt{a}-1\right)=\frac{a-1}{\sqrt{a}}\)

Vậy..............
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{1}{a-1}\right):\frac{a}{2+2\sqrt{a}}\)( điều kiện như trên )

\(B=\frac{\sqrt{a}\left(\sqrt{a}-1\right)-\sqrt{a}\left(\sqrt{a}+1\right)+1}{a-1}:\frac{a}{2\left(1+\sqrt{a}\right)}\)

\(B=\frac{a-\sqrt{a}-a-\sqrt{a}+1}{a-1}:\frac{a}{\left(\sqrt{a}+1\right).2}\)

\(B=\frac{1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}.\frac{\left(\sqrt{a}+1\right).2}{a}\)

\(B=\frac{2\left(1-2\sqrt{a}\right)}{a\left(\sqrt{a}-1\right)}\)

Vậy.........

_Minh ngụy_

Thu Hường Nguyễn
Xem chi tiết
Anh Quoc
Xem chi tiết
phan tuấn anh
22 tháng 6 2016 lúc 14:19

sao ko có đề bài ( toàn là rút gọn à)

Anh Quoc
22 tháng 6 2016 lúc 14:28

câu cuối sai nhé . đúng thì ntn

\(\frac{3a-3+\sqrt{9a}}{a+\sqrt{a-2}}-\frac{\sqrt{a+1}}{\sqrt{a+2}}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)

Cô Hoàng Huyền
22 tháng 6 2016 lúc 16:38

Cô giúp em nhé :)

a. \(A=\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\frac{3-\sqrt{x}}{x-1}\)

\(=\frac{x+\sqrt{x}+x-\sqrt{x}}{1-x}+\frac{3-\sqrt{x}}{x-1}=\frac{-2x-\sqrt{x}+3}{x-1}\)

\(=\frac{\left(-2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{-2\sqrt{x}-3}{\sqrt{x}+1}\)

b. \(B=\frac{\left(3+\sqrt{x}\right)^2-\left(3-\sqrt{x}\right)^2+4x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}:\frac{5\sqrt{x}-4\sqrt{x}-2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(B=\frac{12\sqrt{x}+4x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}:\frac{\sqrt{x}-2}{\sqrt{x}\left(3-\sqrt{x}\right)}=\frac{4x}{\sqrt{x}-2}\)

Tdq_S.Coups
Xem chi tiết