C/Minh đẳng thức:
a) \(\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\frac{2}{a-1}\) (với a>0, b>0, a≠b)
b)\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\) (với a>0, b>0,a≠b)
c) \(\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}=\frac{a+9}{a-9}\) (với a≥0, b≥0,a≠9)
a. A=(\(\frac{3x+16\sqrt{x}-7}{x+2\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{\sqrt{x}+7}{\sqrt{x}-1}\)) : (\(2-\frac{\sqrt{x}}{\sqrt{x}-1}\))
b. B=(\(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\)) :( 1-\(\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\))
c. C=( \(\frac{\sqrt{x}-4x}{1+4x}-1\)):(\(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}}-1\))
d. D=(\(\frac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a+b}}+\frac{a-b}{\sqrt{a^2-b^2}-a+b}\))\(\frac{a^2+b^2}{\sqrt{a^2-b^2}}\)
e. E=\(\frac{\left(\sqrt{a}-\sqrt{b}\right)+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}-b\)
Rút gọn:\(1-\left(\frac{2a\sqrt{a}+a-\sqrt{a}}{a\sqrt{a}-1}-\frac{2\sqrt{a}-1}{\sqrt{a}-1}\right)\frac{\sqrt{a-a}}{2\sqrt{a}-1}\)
1/ Tính:
a) \(\frac{\sqrt{6+\sqrt{11}}-\sqrt{7-\sqrt{33}}}{\sqrt{6}+\sqrt{2}}\)
b) \(\frac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\frac{2}{4+\sqrt{15}}-\frac{5\sqrt{5}+3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
2/ Rút Gọn: với a ≥ 0, a ≠ 1
B=\(\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\left(\frac{1+\sqrt{a}}{a-1}\right)^2\)
3/ Cho biểu thức: A = \(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3-3\sqrt{x}}{x-5\sqrt{x}+6}\)
a) Tìm điều kiện xác định của A
b) Rút gọn A
c) Tìm x để A < -1
Cho A=\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)\left(\frac{a-\sqrt{a}}{\sqrt{a}+1}-\frac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
a) Rút gọn
b) Tìm a để A=-4
C=\(\left(\frac{1}{\sqrt{a}-1}+\frac{1}{\sqrt{a}}\right):\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-4}\)
a) rút gọn C
b) tìm a để C >1/6
Rút gọn
a, \(\frac{2\sqrt{3-1}}{\sqrt{15}}-\frac{2-\sqrt{5}}{\sqrt{3}}-\frac{4\sqrt{15}-10\sqrt{3}}{15}\)
b, \(\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\left(\frac{\sqrt{a}+1}{\sqrt{a-1}}+\frac{\sqrt{a-1}}{\sqrt{a}+1}\right)\)
c, \(\sqrt{4+\sqrt{7}-\sqrt{4-\sqrt{7}}}\)
d, \(6+2\sqrt{2}.3-\sqrt{4+\sqrt{2\sqrt{3}}}\)
e, \(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
Help me !!!
Cho A \(=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)
a) Tìm ĐKXĐ và rút gọn
b) Tính A khi a \(=\frac{\sqrt{6}}{2+\sqrt{6}}\)
Cho biểu thức:
\(P=\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}+\left[1-\frac{1}{\sqrt{a}}\right]\left[\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right]\)
a)Rút gọn P
b)Tìm a để P=7
\(A=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
a) Rút gọn A.
b) Tìm a để A < 0.
c) Tìm a để A = -2.