Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thành Trương
Xem chi tiết
₮ØⱤ₴₮
26 tháng 9 2019 lúc 14:17

????

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 10 2019 lúc 0:12

a/ ĐKXĐ: ...

\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)

\(\Rightarrow x+\frac{1}{4x}=a^2-1\)

Pt trở thành:

\(3a=2\left(a^2-1\right)-7\)

\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)

\(\Leftrightarrow2x-6\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)

b/ ĐKXĐ:

\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)

\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
27 tháng 10 2019 lúc 0:22

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

d/ ĐKXĐ: ...

\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)

\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)

\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)

\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)

\(\Leftrightarrow4x^2-17x+4=0\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
27 tháng 10 2019 lúc 0:29

e/ ĐKXĐ: ...

\(\Leftrightarrow x^2-1+2x\sqrt{\frac{x^2-1}{x}}=3x\)

Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:

\(\frac{x^2-1}{x}+2\sqrt{\frac{x^2-1}{x}}=3\)

Đặt \(\sqrt{\frac{x^2-1}{x}}=a\ge0\)

\(a^2+2a=3\Leftrightarrow a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\frac{x^2-1}{x}}=1\Leftrightarrow x^2-1=x\Leftrightarrow x^2-x-1=0\)

f/ ĐKXĐ: ...

\(\Leftrightarrow x^2-6+x\sqrt{\frac{x^2-6}{x}}-6x=0\)

Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:

\(\frac{x^2-6}{x}+\sqrt{\frac{x^2-6}{x}}-6=0\)

Đặt \(\sqrt{\frac{x^2-6}{x}}=a\ge0\)

\(a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{\frac{x^2-6}{x}}=2\Leftrightarrow x^2-4x-6=0\)

Khách vãng lai đã xóa
Blue Frost
Xem chi tiết
Thanh
Xem chi tiết
Hải Nam Xiumin
Xem chi tiết
Hậu Duệ Mặt Trời
20 tháng 7 2016 lúc 20:52

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

Hải Nam Xiumin
21 tháng 7 2016 lúc 6:58

cảm ơn bạn nha ok

Blue Frost
Xem chi tiết
Lê Hà Vy
Xem chi tiết
tam Nguyen
23 tháng 5 2019 lúc 18:45

hỏi j v

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 10 2019 lúc 14:15

a/ ĐKXĐ: ...

\(\Leftrightarrow2\sqrt{\frac{x}{x-1}}-\sqrt{\frac{x-1}{x}}=\frac{2\left(x-1\right)}{x}+3\)

Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)

\(\frac{2}{a}-a=2a^2+3\Leftrightarrow2a^3+a^2+3a-2=0\)

\(\Leftrightarrow\left(2a-1\right)\left(a^2+a+2\right)=0\Leftrightarrow a=\frac{1}{2}\)

\(\Rightarrow\sqrt{\frac{x-1}{x}}=\frac{1}{2}\Leftrightarrow4\left(x-1\right)=x\)

b/ ĐKXĐ: ...

\(\Leftrightarrow3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=\frac{3\left(x-1\right)}{2x}+10\)

Đặt \(\sqrt{\frac{x-1}{2x}}=a>0\)

\(\frac{3}{a}+4a=3a^2+10\Leftrightarrow3a^3-4a^2+10a-3=0\)

\(\Leftrightarrow\left(3a-1\right)\left(a^2-a+3\right)=0\Leftrightarrow a=\frac{1}{3}\)

\(\Leftrightarrow\sqrt{\frac{x-1}{2x}}=\frac{1}{3}\Leftrightarrow9\left(x-1\right)=2x\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
23 tháng 10 2019 lúc 14:19

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{\frac{x}{3-2x}}+5\sqrt{\frac{3-2x}{x}}=\frac{4\left(3-2x\right)}{x}+5\)

Đặt \(\sqrt{\frac{3-2x}{x}}=a>0\)

\(\frac{1}{a}+5a=4a^2+5\Leftrightarrow4a^3-5a^2+5a-1=0\)

\(\Leftrightarrow\left(4a-1\right)\left(a^2-a+1\right)=0\Leftrightarrow a=\frac{1}{4}\)

\(\Leftrightarrow\sqrt{\frac{3-2x}{x}}=\frac{1}{4}\Leftrightarrow16\left(3-2x\right)=x\)

d/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)

\(a^2-2a=3\Leftrightarrow a^2-2a-3=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=3\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\frac{x-1}{x}}=3\Leftrightarrow x-1=9x\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
23 tháng 10 2019 lúc 14:23

e/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{x}{x-1}}=a>0\)

\(a+\frac{1}{a}=\frac{3}{\sqrt{2}}\Leftrightarrow a^2-\frac{3}{\sqrt{2}}a+1=0\)

\(\Rightarrow\left[{}\begin{matrix}a=\sqrt{2}\\a=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{\frac{x}{x-1}}=\sqrt{2}\\\sqrt{\frac{x}{x-1}}=\frac{\sqrt{2}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(x-1\right)\\2x=x-1\end{matrix}\right.\)

f/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{\frac{x^2-1}{x}}=\frac{1-x}{\sqrt{x}}\)

Bình phương 2 vế:

\(\frac{x^2-1}{x}=\frac{\left(1-x\right)^2}{x}\Leftrightarrow x^2-1=x^2-2x+1\)

\(\Rightarrow x=1\)

Khách vãng lai đã xóa
Love
Xem chi tiết