tìm x,y thỏa mãn :
\(\frac{3x+2y}{4x-y}=\frac{3}{4}\)
\(\text{tìm tỉ số }\frac{x}{y}\)
nhớ giải ra
1)
\(a.Cho_{_{_{_{_{ }}}}}BT:M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^4+4x^2+3}...\)
1.Rút gọn
2.tìm GTLN của BT
\(\text{b.Cho x,y là số hữu tỉ khác 1 thỏa mãn }:\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\)
\(\text{ C/m M=}x^2+y^2-xy_{_{_{_{ }}}}\text{là bình phương của 1 số hữu tỉ}\)
1)Cho x, y thỏa mãn \(y\left(x+y\right)\ne0\)và\(x^2-xy=2y^2\)Tính \(A=\frac{3x-y}{x+y}\)
2)Tìm a,b sao cho đa thức f(x)=ax+bx2+10x-4 chia hết cho đa thức g(x)=x2+x-2
3)Tìm số nguyên a sao cho a4 + 4 là số nguyên tố
4)Giải pt \(\frac{x}{x^2+4x+4}+\frac{5x}{x^2+4}=-2\)
5)Giải pt\(\frac{x^2+2x+1}{x^2-x+1}-\frac{x^2-2x+1}{x^2+x+1}=\frac{20}{7}\)
6)Cho các số dương x, y, z thỏa mãn x2+y2+z2=1
Cmr\(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{1}{3}\)
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
a, cho 2 số dương x,y thỏa mãn x+y=1
tìm min của \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
b, cho x,y,z là các số dương thỏa mãn : \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)
Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2
b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)
Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)
Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)
Cho x;y là hai số thực dương thỏa mãn \(x+y\ge4\). Tìm GTNN của biểu thức :
\(D=3x^2+y^2+\frac{32}{x}+\frac{4}{y}-3x+2y\)
Cho 2 số thực dương thỏa mãn \(x+y\ge4\) Tìm giá trị nhỏ nhất \(P=3x^2+y^2+\frac{32}{x}+\frac{4}{y}-3x+2y\)
Cho hai số dương x,y thay đổi thỏa mãn điều kiện \(x+y\ge4\)
Tìm min \(P=\frac{3x^2+4}{4x}+\frac{2+y^3}{y^2}\)
Ta có
\(P=\frac{3}{4}x+\frac{1}{x}+\frac{2}{y^2}+y\)
\(=\left(\frac{1}{x}+\frac{x}{4}\right)+\left(\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\right)+\frac{1}{2}\left(x+y\right)\)
\(\ge2\sqrt{\frac{1}{x}.\frac{x}{4}}+3\sqrt[3]{\frac{2}{y^2}.\frac{y}{4}.\frac{y}{4}}+\frac{1}{2}.4=1+\frac{3}{2}+2=\frac{9}{2}\)
Vậy MInP=9/2 khi \(\hept{\begin{cases}\frac{1}{x}=\frac{x}{4}\\\frac{2}{y^2}=\frac{y}{4}\\x+y=4\end{cases}\Rightarrow}x=y=2\)
b1. Cho biểu thức \(A=\left(\frac{4x}{2+x}+\frac{8x^2}{4-x^2}\right):\left(\frac{x-1}{x^2-2x}-\frac{2}{x}\right)\)rút gọn A và tìm giá trị của x để A<0
b2. a) Tìm các số nguyên x, y thỏa mãn \(x^3+3x=x^2y+2y+5\)
b)tìm các số nguyên x; y thỏa mãn \(18x^2-3xy-5y=25\)
b3. cho các số thực a, b, c thỏa mãn \(a^2+b^2+c^2\le8\). Tìm GTNN của biểu thức sau: S= 2016ac-ab-bc
lm hộ mk vsss mn
b1:
ĐKXĐ: \(x\ne0;x\ne\pm2\)
Ta có : \(A=\left(\frac{4x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{8x^2}{x^2-4}\right)\left(\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)
\(=\left(\frac{4x^2-8x-8x^2}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{x-1-2x+4}{x\left(x-2\right)}\right)\)
\(=\left(\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{3-3x}{x\left(x-2\right)}\right)\)
\(=\frac{12\left(x-1\right)}{x-2}\)
Vậy ....
Ta có : \(A< 0\Rightarrow\frac{12\left(x-1\right)}{x-2}< 0\)
Đến đây xét 2 TH 12(x-1)<0 & (x-2)>0 hoặc 12(x-1)>0 & (x-2)<0
b2 :
b) Ta có: \(18x^2-3xy-5y=25\Leftrightarrow9x^2-3xy+\frac{1}{4}y^2+9x^2-\frac{1}{4}y^2-5y-25=0\)
\(\Leftrightarrow\left(3x-\frac{1}{2}y\right)^2+9x^2-\left(\frac{1}{2}y+5\right)^2=0\Leftrightarrow\left(3x-\frac{1}{2}y\right)^2-25+\left(3x-\frac{1}{2}y-5\right)\left(3x+\frac{1}{2}y+5\right)=-25\)
\(\Leftrightarrow\left(3x-\frac{1}{2}y+5\right)\left(3x-\frac{1}{2}y-5\right)+\left(3x-\frac{1}{2}y-5\right)\left(3x+\frac{1}{2}y+5\right)=-25\)
\(\Leftrightarrow\left(3x-\frac{1}{2}y-5\right)\left(6x+10\right)=-25\Leftrightarrow\left(6x-y-10\right)\left(3x+5\right)=-25\)
đến đây xét các TH. Ví dụ 1 TH :
\(\hept{\begin{cases}6x-y-10=1\\3x+5=-25\end{cases}\Rightarrow\hept{\begin{cases}y=-41\\x=-10\end{cases}}\left(tm\right)}\)
Làm tương tự với các TH còn lại
Cho x, y thỏa mãn: \(\frac{2x-3y}{x+2y}=\frac{2}{3}\). Tìm tỉ số \(\frac{y}{x}\)
\(\frac{2x-3y}{x+2y}=\frac{2}{3}=>\left(2x-3y\right).3=\left(x+2y\right).2=>6x-9y=2x+4y=>6x-2x=9y+4y\)
=>4x=13y
hay \(\frac{x}{y}=\frac{13}{4}\)
vậy gtri của tỉ số x/y là 13/4
Cho 3 số dương x,y,z thỏa mãn x+2y+3z=20. Tìm giá trị nhỏ nhất của biểu thức \(M=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
\(M=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
\(=\left(\frac{3}{x}+\frac{3x}{4}\right)+\left(\frac{9}{2y}+\frac{y}{2}\right)+\left(\frac{4}{z}+\frac{z}{4}\right)+\left(\frac{x}{4}+\frac{y}{2}+\frac{3z}{4}\right)\)
\(\ge13\)
Dấu "=" xảy ra tại x=2;y=3;z=4
Để ý điểm rơi mà làm bạn :)
Quan trọng lại việc tìm điểm rơi như thế nào?
Another Way:
\(M=\frac{3yz\left(x-2\right)^2+2zx\left(y-3\right)^2+xy\left(z-4\right)^2}{4xyz}+13\ge13\)