cho A= 1+3+32+33 +.....+ 348 + 349. TÌM CHỮ SỐ TẬN CÙNG CỦA A
Cho A=1+3+32+33+34+...+3101.Tìm chữ số tận cùng của A
Ta có : \(3A=3+3^2+3^3+...+3^{102}\)
Lấy 3A trừ A theo vế ta có :
\(3A-A=\left(3+3^2+3^3+...+3^{102}\right)-\left(1+3+3^2+...+3^{101}\right)\)
\(2A=3^{102}-1\)
\(A=\frac{3^{102}-1}{2}\)
Ta có : 3102 - 1 = 3100 + 2 - 1
= 325.4 + 2 - 1
= 325.4 . 32 - 1
= ....1 . 9 - 1
= ...9 - 1
= ...8
=> \(\frac{3^{102}-1}{2}=\overline{..8}:2=\overline{...4}\)
Vậy chữ số tận cùng của A là 4
Nhân A thêm 3
Lấy 3A - A được 3^102 -1
A = (3^102-1)/2
3^4k có tận cùng là 1
nên A có tận cùng là 0
Bee swam à kb đi
Tên tui là Acerchicken
A = 1 + 3 + 32 + 33 + ...+ 358 + 359 .tìm chữ số tận cùng của A
Lời giải:
$A=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+....+(3^{56}+3^{57}+3^{58}+3^{59})$
$=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+...+3^{56}(1+3+3^2+3^3)$
$=(1+3+3^2+3^3)(1+3^4+...+3^{56})$
$=40.(1+3^4+...+3^{56})\vdots 10$
Do đó chữ số tận cùng của $A$ là $0$
Cho A = 1 + 3 + 3 2 + 3 3 + . . . . + 3 30 . Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương
Cho A = 1 + 3 + 3 2 + 3 3 + . . . + 3 30 . Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương
A = 1 + 3 + 3 2 + 3 3 + . . . + 3 30
3 A = 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31
2A = 3A – A = ( 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31 ) – ( 1 + 3 + 3 2 + 3 3 + . . . + 3 30 )
2A = 3 31 - 1
A = 3 31 - 1 2
Ta có 3 1 = 3 ; 3 3 = 9 ; 3 3 = 27 ; 3 4 = 81 ; 3 5 = 243
với n ≥ 0 thì 3 4 n + 3 có chữ số tận cùng là 7.Vì 31 = 4.7 + 3 nên 3 31 có chữ số tận cùng là 7. Do đó 3 31 - 1 2 có chữ số tận cùng là 3. Mà không có số nào bình phương lên có chữ số tận cùng là 3 nên A không là số chính phương.
Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương
Cho S = 1+3+32 +33 +.........+348 +349 a ) chứng tỏ S chia hết cho 4
Đây là toán lớp 3 á!!!!
Mà bn có vt sai đề bài ko? Mk tính ko ra
để mik xem lại
Cho A = 3 + 32 + 33 + ...+ 3120
a) c/m A chia hết cho 4,13 và 82 b)tìm chữ số tận cùng của A c) c/m 2A-3 là lũy thừa của 3bài 1:tìm chữ số tận cùng
7430;4931;8732;5833;2355;20162016;20072016;4 mũ 5,6,7,8
bài 2: cho A=172008-112008-32016
tìm chữ số tận cùng của a
Cho A = 1+31 + 32+ 33 +.....+3030
Tìm chữ số tận cùng của A , từ đó suy ra A không phải là số chính phương.
Các bạn giúp mình với
Lời giải:
$A=1+3+3^2+3^3+....+3^{30}$
$3A=3+3^2+3^3+....+3^{31}$
$3A-A=(3+3^2+3^3+...+3^{31})-(1+3+...+3^{30})$
$2A=3^{31}-1$
$A=\frac{3^{31}-1}{2}=\frac{3.3^{30}-1}{2}$
$=\frac{3.9^{15}-1}{2}$
Ta thấy: Đối với $9^n$ thì $n$ chẵn số này sẽ có tận cùng là $1$, $n$ lẻ sẽ có tận cùng là $9$
Vậy $9^{15}$ tận cùng là $9$
$\Rightarrow 3.9^{15}$ tận cùng là $7$
$\Rightarrow 3.9^{15}-1$ tận cùng là $6$
$\Rightarrow A=\frac{3.9^{15}-1}{2}$ tận cùng là $3$ hoặc $8$
Do đó $A$ không thể là scp.
Câu 1: Cho A = 3 + 32 + 33 + ... + 3100 a. Tìm x \(\in\) N biết 2A + 3 = 3x
b. Chứng minh : A \(⋮\) 4
Câu 2: Cho B = 51 + 52 + ... + 596
a. Chứng minh : B \(⋮\)126
b. Tìm chữ số tận cùng của B
Ta có : \(A=3+3^2+3^3+...........+3^{100}\)
\(\Rightarrow3A=3^2+3^3+3^4+......+3^{101}\)
\(\Rightarrow3A-A=3^{101}-3\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow2A+3=3^{101}\)
Vậy x = 101