Chứng Minh rằng các đường cao của hình thoi bằng nhau
Chứng minh rằng các đường cao của hình thoi bằng nhau.
Xét hình thoi ABCD, kẻ hai đường cao
AH ⊥ BC, AK ⊥ CD.
Ta cần chứng minh: AH = AK.
Áp dụng định nghĩa, tính chất về góc và giả thiết của hình thoi ABCD, ta có:
⇒ Δ ABH = Δ ADH ( g - c - g )
⇒ AH = AK (cặp cạnh tương ứng bằng nhau)
→ (đpcm)
Chứng minh rằng các đường cao của hình thoi bằng nhau
Xét hình thoi ABCD, kẻ hai đường cao AH ⊥ BC, AK ⊥ CD
Ta cần chứng minh: AH = AK.
Áp dụng định nghĩa, tính chất về góc và giả thiết của hình thoi ABCD, ta có:
⇒ Δ ABH = Δ ADH ( g - c - g )
⇒ AH = AK (cặp cạnh tương ứng bằng nhau)
→ (đpcm)
a) Cho hình thoi ABCD. Kẻ hai đường cao AH, AK. Chứng minh rằng AH = AK ?
b) Hình bình hành ABCD có hai đường cao AH, AK bằng nhau. Chứng minh rằng ABCD là hình thoi ?
Giải:
a) Hình vẽ:
Xét hai tam giác vuông \(AHD\) và \(AKB\) ta có:
\(AD=AB\) (cạnh hình thoi)
\(\widehat{D}=\widehat{B}\) (hai góc đối hình thoi)
Do đó: \(\Delta AHD=\Delta AKB\) (cạnh huyền - góc nhọn)
\(\Rightarrow AH=AK\) (Đpcm)
b) Hình vẽ:
Cách 1: Ta có: \(\Delta AHD=\Delta AKB\left(g.c.g\right)\)
\(\Rightarrow AD=AK\)
Hình bình hành \(ABCD\) có hai cạnh kề bằng nhau nên là hình thoi (Đpcm)
Cách 2: Ta có: \(\Delta AHC=\Delta AKC\) (cạnh huyền - cạnh góc vuông)
\(\Rightarrow\widehat{C_1}=\widehat{C_2}\)
Hình bình hành \(ABCD\) có một đường chéo là phân giác của một góc nên là hình thoi (Đpcm)
a) cho hình thoi ABCD . kẻ hai đường cao AH , AK . Chứng minh rằng AH=AK
b) hình bình hành ABCD có hai đường cao AH,AK bằng nhau . Chứng minh rằng ABCD là hình thoi
xét \(\Delta\)ACK và ABH có
AB=AC(tc hình thoi)
\(\widehat{AKC}=\widehat{AHB}=90^o\)
\(\widehat{B}=\widehat{C}\)
theo trường hợp cạnh huyền góc nhọn
=>AH=AK (2 cạnh tương ứng)
b)
xét \(\Delta\)AKDvà \(\Delta\)AHB
có\(\widehat{AHB}=\widehat{AK\text{D}}=90^o\)
AH=AK(gt)
\(\widehat{B}=\widehat{D}\)(tính chất HBH)
=>AB=AD(2 cạnh tương ứng)
ABCD là hình thoi vì là HBH có 2 cạnh kề bằng nhau
Hình bình hành ABCD có hai đường cao AH, AK bằng nhau. Chứng minh rằng ABCD là hình thoi
Xét hai tam giác vuông AHC và AKC, ta có:
∠ (AHC) = ∠ (AKC) = 90 0
AH = AK (gt)
AC cạnh huyền chung
Suy ra: ∆ AHC = ∆ AKC (cạnh huyền- cạnh góc vuông)
⇒ ∠ (ACH) = ∠ (ACK) hay ∠ (ACB) = ∠ (ACD)
⇒ CA là tia phân giác ∠ (BCD)
Hình bình hành ABCD có đường chéo CA là đường phân giác nên là hình thoi.
Chứng minh rằng các đường cao của hình thoi bằng nhau.
Chứng minh răng các đường cao của hinh thoi bằng nhau
Chứng Minh:
1, Các góc đối nhau bằng nhau là hình thoi
2,Hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường là hình thoi
3, Hai đường chéo là các đường phân giác của các góc của hình thoi.
4,Hình thoi có tất cả tính chất của hình bình hành.
Bài 1:Chứng minh rằng trung điểm 4 cạnh của 1 hình chữ nhật là đỉnh của hình thoi
Bài 2:Chứng minh rằng trung điểm các cạnh của 1 hình thoi là đỉnh cao của 1 hình chữ nhật
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.