Cho pt :x^2+4x-m^2-5m=0 .tìm m để pt có 2 nghiệm phân biệt thỏa mãn x1x2 |x1 -x2 |=4
x^2 - (m-2)*x -6 = 0. Tìm m để pt có 2 nghiệm phân biệt x1 x2 thỏa mãn x1 + x2 - 3 x1x2=0
Giúp mk vs
\(ac=-6< 0\Rightarrow\) phương trình đã cho luôn luôn có 2 nghiệm pb (trái dấu)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-6\end{matrix}\right.\)
Thế vào đề bài:
\(m-2-3\left(-6\right)=0\)
\(\Leftrightarrow m+16=0\Leftrightarrow m=-16\)
\(x^2-\left(m-2\right)x-6=0\left(1\right)\)
\(\Rightarrow\Delta=b^2-4ac=\left[-\left(m-2\right)\right]^2-4.\left(-6\right)\)
\(=m^2-4m+4+24=m^2-4m+28\)
\(=\left(m-2\right)^2+24\)
Thấy \(\left(m-2\right)^2\ge0\)\(\Rightarrow\left(m-2\right)^2+24>0\forall m\)
Vậy phương trình luân có 2 nghiệm phân biệt \(x_1,x_2\)
Áp dụng \(Vi-ét \) ta có :
\(S=x_1+x_2=\dfrac{-b}{a}=m-2\)
\(P=x_1.x_2=\dfrac{c}{a}=-6\)
Ta có \(x_1+x_2-3.x_1.x_2=0\)
\(\Leftrightarrow m-2-3.\left(-6\right)=0\Rightarrow m=-16\)
ho pt: x2 + x + m - 5 =0 (1)
Tìm m để pt(1) có 2 nghiệm phân biệt x1 khác 0; x2 khác 0 thỏa mãn:
6−m−x1x2 +6−m−x2x1
Cho pt x^2-2(m-2)+(m^2+2m-3)=0
Tìm m để pt có 2 nghiệm x1x2 phân biệt thỏa mãn 1/x1+1/x2=x1+x2/5
Chú ý
x1,x2 số 1,2 nằm dưới x
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Cho pt xã -4x4 m=0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức 2x1 + x2 = 1 Cho pt: 2x2 3x-2m +3 = 0 ("). Tìm m để phương trình (") có 2 nghiệm phân biệt x1, x2 thỏa mãn hệ thức x1/x2 + xz/x1 =3 Cho pt xã 4x - m + 3 = 0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức x1-x2=7 Giải gấp chi tiết giúp e vs ạ
Cho pt x2+2(m-2)+m2-4m= 0
a) CM pt luôn có 2 nghiệm phân biệt với mọi m
b) tìm m để pt có 2 nghiệm phân biệt thỏa x1, x2 thỏa mãn 3/x1+ x2 = 3/x2+x1
a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`
`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.
b) Viet: `x_1+x_2=-2m+4`
`x_1x_2=m^2-4m`
`3/(x_1) + x_2=3/(x_2)+x_1`
`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`
`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`
`<=>(x_1-x_2).(3+x_1x_2)=0`
`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`
`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`
`<=> 4.(3+m^2-4m)=0`
`<=> m^2-4m+3=0`
`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)
Vậy `m \in {1;3}`.
1,Cho pt: x^2 -2(m+2)x+ m^2 +7=0
Tìm m đểm pt có 2 nghiệm x1,x2 thỏa mãn: x1x2=4+ 2(x1+x2)
Để phương trình có 2 nghiệm \(x_1;x_2\)thì \(\Delta'=\left(m+2\right)^2-m^2-7>0\Rightarrow m^2+4m+4-m^2-7>0\)
\(\Rightarrow4m-3>0\Rightarrow m>\frac{3}{4}\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m+4\\x_1.x_2=m^2+7\end{cases}}\)
Yêu cầu bài toán \(\Leftrightarrow m^2+7=4+2\left(2m+4\right)\Leftrightarrow m^2-4m-5=0\)
\(\Leftrightarrow\left(m+1\right)\left(m-5\right)=0\Leftrightarrow\orbr{\begin{cases}m=-1\left(l\right)\\m=5\left(tm\right)\end{cases}}\)
Vậy \(m=5\)
cho pt bậc 2 : ax^2+bx+c=0 có 2 nghiệm phân biệt thỏa mãn
X1+x2-2.X1x2=0
mx1x2-(x1+x2)=2m+1
a) tìm pt bậc hai trên với m là tham số
b)xác định m để phương trình bậc 2 trên có 2 nghiệm dương phân biệt
viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn
Cho pt: x^3 - mx^2 -x +m=0
Tìm m để: a) pt có 3 nghiệm phân biệt x1, x2, x3 thỏa mãn x1^2 + x2^2 + x3^2 <= 2 (bé hơn hoặc bằng)
b) pt có 2 nghiệm phân biệt
c) pt có 3 nghiệm x1, x2, x3 sao cho 1/ x1 + 1/x2 + 1/x3 =4