Những câu hỏi liên quan
White Boy
Xem chi tiết
Hoàng Lê Bảo Ngọc
24 tháng 10 2016 lúc 11:31

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ta được

\(\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2b}\ge\frac{9}{2\left(a+2b\right)}\)

\(\frac{1}{2b}+\frac{1}{2c}+\frac{1}{2c}\ge\frac{9}{2\left(b+2c\right)}\)

\(\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2a}\ge\frac{9}{2\left(c+2a\right)}\)

Cộng các BĐT theo vế : 

\(\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{2}\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

Dấu "=" xảy ra khi a = b = c (a,b,c>0)

tth_new
2 tháng 6 2018 lúc 8:22

The BĐT \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\). Thật vậy, ta có:

Áp dụng BĐT Bunhiacopxki, ta có:

\(\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)

\(\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\frac{\left(a+b+c\right)^2}{x+y+z}\). Thay a,b,c bởi 1 , ta được

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{x+y+z}\)

Áp dụng vào ta có: \(3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\ge3.\frac{9}{3a+3b+3c}=3.\frac{9}{3\left(a+b+c\right)}=3.\frac{3}{a+b+c}\)

\(=\frac{9}{a+b+c}\)(1)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{9}{a+b+c}\)(2)

Vì (1) bằng (2) nên ta có đpcm . Dấu = xảy ra khi và chỉ khi a=b=c (a,b,c > 0)

Lê Tài Bảo Châu
27 tháng 11 2019 lúc 21:44

Hoàng Lê Bảo Ngọc

BĐt đầu tiên đó cần phải chứng minh

Khách vãng lai đã xóa
Nguyễn Thị Thùy Dung
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 3 2019 lúc 22:31

\(\frac{3}{a+2b}=\frac{3}{a+b+b}\le\frac{3}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{2}{b}\right)\)

Tương tự: \(\frac{3}{b+2c}\le\frac{1}{3}\left(\frac{1}{b}+\frac{2}{c}\right)\) ; \(\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{c}+\frac{2}{a}\right)\)

Cộng vế với vế:

\(3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\le\frac{1}{3}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Tiến Dũng Trương
Xem chi tiết
vũ tiền châu
4 tháng 10 2017 lúc 22:24

bạn biết bđt svác sơ chứ nếu không biết có thể lên mạng tra

Áp dụng bđt svác sơ ta có 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b};\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{9}{b+2c};\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\ge\frac{9}{c+2a}\)

cộng vào ta có 

\(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

Tiến Dũng Trương
5 tháng 10 2017 lúc 5:28

Thêm câu nữa bạn

Rút gọn

\(P=\frac{x^2}{xy+y^2}+\frac{y^2}{xy-x^2}-\frac{x^2+y^2}{xy}\)

Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Thị Minh Thảo
Xem chi tiết
Kiệt Nguyễn
6 tháng 12 2020 lúc 8:43

Áp dụng bất đẳng thức cơ bản dạng\(\left(x+y\right)^2\ge4xy\), ta được: \(\left(a+2b\right)^2=\left(\frac{2a+b}{2}+\frac{3b}{2}\right)^2\ge4.\frac{2a+b}{2}.\frac{3b}{2}=3b\left(2a+b\right)\)

\(\Rightarrow\frac{2a+b}{a+2b}\le\frac{a+2b}{3b}\Rightarrow\frac{2a+b}{a\left(a+2b\right)}\le\frac{1}{3}\left(\frac{2}{a}+\frac{1}{b}\right)\)

Tương tự, ta có: \(\frac{2b+c}{b\left(b+2c\right)}\le\frac{1}{3}\left(\frac{2}{b}+\frac{1}{c}\right)\)\(\frac{2c+a}{c\left(c+2a\right)}\le\frac{1}{3}\left(\frac{2}{c}+\frac{1}{a}\right)\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(c+2a\right)}\)

Đẳng thức xảy ra khi a = b = c 

Khách vãng lai đã xóa
☆☆《Thiên Phi 》☆☆
Xem chi tiết
Trần Thanh Hải
Xem chi tiết
Phùng Minh Quân
6 tháng 1 2019 lúc 21:09

Cauchy-Schwarz dạng Engel 2 lần : 

\(P=\frac{1}{a\left(2b+2c-1\right)}+\frac{1}{b\left(2c+2a-1\right)}+\frac{1}{c\left(2a+2b-1\right)}\)

\(P=\frac{1}{a\left(-a+b+c\right)}+\frac{1}{b\left(a-b+c\right)}+\frac{1}{c\left(a+b-c\right)}\)

\(P=\frac{1}{a-2a^2}+\frac{1}{b-2b^2}+\frac{1}{c-2c^2}\ge\frac{9}{\left(a+b+c\right)-2\left(a^2+b^2+c^2\right)}\ge\frac{9}{1-\frac{2}{3}}=\frac{9}{\frac{1}{3}}=27\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

Trần Thanh Hải
6 tháng 1 2019 lúc 21:16

Cách của bạn sao chỗ cuối lại thế ạ ? Bạn giải hộ mình rõ hơn được không ?

Phùng Minh Quân
6 tháng 1 2019 lúc 21:19

đây :)) 

\(\frac{9}{\left(a+b+c\right)-2\left(a^2+b^2+c^2\right)}=\frac{9}{1-2\left(a^2+b^2+c^2\right)}\)

Có \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1}{3}\) ( Svac-xơ ) 

\(\Rightarrow\)\(\frac{9}{1-2\left(a^2+b^2+c^2\right)}\ge\frac{9}{1-\frac{2}{3}}=27\)

Hiểu chưa mem :3 

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 5 2020 lúc 21:54

\(a+b=1-c>\frac{1}{2}>c\)

Tương tự \(b+c>a;a+c>b\)

\(VT=\frac{1}{a\left(b+c-a\right)}+\frac{1}{b\left(a+c-b\right)}+\frac{1}{c\left(a+b-c\right)}\)

\(VT\ge\frac{4}{\left(a+b+c-a\right)^2}+\frac{4}{\left(b+a+c-b\right)^2}+\frac{4}{\left(c+a+b-c\right)^2}\)

\(VT\ge\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\ge\frac{4}{3}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2\)

\(VT\ge\frac{4}{3}\left(\frac{9}{2\left(a+b+c\right)}\right)^2=\frac{4.81}{3.4}=27\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Hạ Vy
Xem chi tiết
Trần Quốc Khanh
15 tháng 2 2020 lúc 9:03

Cần CM bĐT phụ sau : \(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{1}{a+b}\left(1\right)\)

Có \(a+b\ge2\sqrt{ab},\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\Rightarrow\) (1) đúng

Áp dụng (1) ta có \(\frac{1}{2a+b+c}=\frac{1}{\left(a+b+c\right)+a}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a+b+c}\right)\left(2\right)\)

Tương tự có \(\frac{1}{a+2b+c}\le\frac{1}{4}\left(\frac{1}{a+b+c}+\frac{1}{b}\right)\left(3\right),\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a+b+c}+\frac{1}{c}\right)\left(4\right)̸\)

Cọng (2),(3) và (4) có \(VT\le\frac{1}{4}\left(\frac{3}{a+b+c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
16 tháng 2 2020 lúc 7:34

\(\frac{1}{2a+b+c}=\frac{1}{a+a+b+c}\le\frac{1}{4}\left(\frac{1}{a+a}+\frac{1}{b+c}\right)\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Tương tự ta có: \(\frac{1}{a+2b+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\) ; \(\frac{1}{a+b+2c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right)\)

Cộng vế với vế:

\(VT\le\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{2}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
14 tháng 2 2020 lúc 23:57

Đề bài ở vế phải là \(\frac{1}{4}+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) hay \(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) bạn?

Khách vãng lai đã xóa