Giải phương trình: (y+1)^4+(y-1)^4=82
Giải phương trình: (x+1)^4+(x-3)^4=82
Lời giải:
Đặt $x-1=a$ thì $x+1=a+2$ và $x-3=a-2$
PT trở thành: $(a+2)^4+(a-2)^4=82$
$\Leftrightarrow 2a^4+48a^2+32=82$
$\Leftrightarrow a^4+24a^2-25=0$
$\Leftrightarrow (a^2-1)(a^2+25)=0$
$\Rightarrow a^2-1=0$
$\Leftrightarrow (x-1)^2-1=0$
$\Leftrightarrow (x-2)x=0\Rightarrow x=0$ hoặc $x=2$
GIẢI HỆ PHƯƠNG TRÌNH:
1.\(\hept{\begin{cases}\sqrt[4]{y^3-1}+\sqrt{x}=3\\x^2+y^2=82\end{cases}}\)
2.\(\hept{\begin{cases}\left(x-1\right)\left(xy-x^2\right)=3\\x^2-2y+y^2=4\end{cases}}\)
Giải phương trình: (x+1)4+(x+3)4=82
đặt y=x+2, rút gọn ta có
\(2y^4\)+ \(12y^2\)+ \(2=82\)
<=> \(y^4+6y^2-40=0\)
đặt \(y^2=z>0\)ta có \(z^2+6z-40=0\)suy ra \(\left(z+3\right)^2-49=0\)
<=> z+3=7(để z>0) <=> z=4
Vậy phương trình có tập nghiệm là.......(bạn tự tính nốt nhé)
giải pt
(y+1)^4 +(y-1)^4=82
=>y^4+4y^3+6y^2+4y+1+y^4-4y^3+6y^2-4y+1=82
=>2y^4+12y^2-80=0
=>y^4+6y^2-40=0
=>(y^2+10)(y^2-4)=0
=>y^2-4=0
=>y=2 hoặc y=-2
Giải phương trình nghiệm nguyên 1/x + 1/y = 1/2
Giải phương trình x^2+1/x^2 ++ 1/y^2 + y^2 = 4
\(\Leftrightarrow\frac{y+x}{xy}=\frac{1}{2}\)
=>\(\frac{x+y}{xy}-\frac{1}{2}=0\)
\(\Rightarrow\frac{-\left(x-2\right)y-2x}{2xy}=0\)
=>(x-2)y-2x=0
=>x-2=0( vì x-2=0 thì nhân y-2x ms =0 )
=>x=2
=>y-2=0
=>y=2
vậy x=y=2
1. Giải phương trình: \(\sqrt{x-2}+\sqrt{4-x}=\sqrt{2}\) .
2. Giải phương trình: \(4x^4-7x^3+9x^2-10x+4=0\).
3. Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+y^2=3-xy\\x^4+y^4=2\end{matrix}\right.\) .
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)
Nãy mình tìm được một cách giải tương tự cho câu 2.
PT \(\Leftrightarrow\left(x-1\right)\left(4x^3-3x^2+6x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x^3-3x^2+6x-4=0\left(1\right)\end{matrix}\right.\)
Vậy pt có 1 nghiệm bằng 1.
\(\left(1\right)\Rightarrow8x^3-6x^2+12x-8=0\)
\(\Leftrightarrow7x^3+x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=-7x^3\)
\(\Leftrightarrow x-2=-\sqrt[3]{7}x\)
\(\Leftrightarrow x=\dfrac{2}{1+\sqrt[3]{7}}\)
Vậy pt có nghiệm \(S=\left\{1;\dfrac{2}{1+\sqrt[3]{7}}\right\}\)
Lưu ý: Nghiệm của người kia hoàn toàn tương đồng với nghiệm của mình (\(\dfrac{2}{1+\sqrt[3]{7}}=\dfrac{1}{4}\left(1-\sqrt[3]{7}+\sqrt[3]{49}\right)\))
giải phương trình (x+2)^4+(x+4)2=16
và (x+1)^4+(x+3)^4=82
1) Giải hệ phương phương trình trình 1/(x - 2) - 2sqrt(y + 1) = - 4; 2/(x - 2) + sqrt(y + 1) = 7
ĐKXĐ: x<>2 và y>=-1
\(\left\{{}\begin{matrix}\dfrac{1}{x-2}-2\sqrt{y+1}=-4\\\dfrac{2}{x-2}+\sqrt{y+1}=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2}{x-2}-4\sqrt{y+1}=-8\\\dfrac{2}{x-2}+\sqrt{y+1}=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-5\sqrt{y+1}=-15\\\dfrac{2}{x-2}+\sqrt{y+1}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=3\\\dfrac{2}{x-2}=7-3=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y+1=9\\x-2=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=8\\x=\dfrac{5}{2}\end{matrix}\right.\left(nhận\right)\)
giải phương trình
a, (x + 1)^4 + (x - 3)^4 = 82
b, (x - 2,5)^4 + (x - 1,5)^4 = 1
giải chi tiết giùm nha
câu a:
Đặt \(x-1=a\)thì pt trở thành \(\left(a+2\right)^4+\left(a-2\right)^4=82\), phá ra rồi giải pt tích