c/m không phụ thuộc vào biến
M=3x( x-5y) + (y-5x) . (-3y) -3(x2-y2) -1
:Các biểu thức sau không phụ thuộc vào giá trị của biến đúng hay sai :
a/ 2(2x+x2)-x2(x+2)+(x3-4x+3) b/ x(x2+x+1)-x2(x+1) –x+5
c/ 3x(x-2)-5x(x-1)-8(x2-3) d/ 2y(y2+y+1)-2y2(y+1)-2(y+10)
Chứng minh rằng các biểu thức sau ko phụ thuộc vào biến !!! A=3x(x-5y)+(y-5x)-3y-3(x^2-y^2)+1 B=3x(2x-5y)+(3x-y)-2x×1/2(-26xy)
Chứng minh rằng:biểu thức không phụ thuộc vào biến x và y!!
M=3x.(x-5y) + (y-5x).(-3y) -3.(x^2-y^2)
\(M=3x\left(x-5y\right)+\left(y-5x\right)\left(-3y\right)-3\left(x^2-y^2\right)=3x^2-15xy-3y^2+15xy-3x^2+3y^2=0\)Vậy biểu thức trên không phụ thuộc vào biến x ,y
M= 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2
Vậy biểu thức M có giá trị không phụ thuộc vào biến x và biến y.
giải giúp mình nha. Mình đang cần gấp
chứng minh giá trị biểu thức sau không phụ thuộc vào x và y
M=3x(x-5y)+(y-5x).(-3y)-3(x^2-y^2)-1
cảm ơn nhìu nha
Ta có:
\(M=3x\left(x-5y\right)+\left(y-5x\right)\left(-3y\right)-3\left(x^2-y^2\right)-1\)
\(M=3x^2-15xy-3y^2+15xy-3x^2+3y^2\)
\(M=0\left(đpcm\right)\)
a.P=(5x2-2xy+y2)-(x2+y2)-(4x2-5xy+1)
b. chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến x:
(x2-5x+4)(2x+3)-(2x2-x-10)(x-3)
`# \text {04th5}`
`a.`
`P = (5x^2 - 2xy + y^2) - (x^2 + y^2) - (4x^2 - 5xy + 1)`
`= 5x^2 - 2xy + y^2 - x^2 - y^2 - 4x^2 + 5xy - 1`
`= (5x^2 - x^2 - 4x^2) + (-2xy + 5xy) + (y^2 - y^2) - 1`
`= 3xy - 1`
`b.`
\((x^2-5x+4)(2x+3)-(2x^2-x-10)(x-3)\)
`= x^2(2x + 3) - 5x(2x + 3) + 4(2x + 3) - [ 2x^2(x - 3) - x(x - 3) - 10(x - 3)]`
`= 2x^3 + 3x^2 - 10x^2 - 15x + 8x + 12 - (2x^3 - 6x^2 - x^2 + 3x - 19x + 30)`
`= 2x^3 -7x^2 - 7x + 12 - (2x^3 - 7x^2 - 7x + 30)`
`= 2x^3 - 7x^2 - 7x + 12 - 2x^3 + 7x^2 + 7x -30`
`= -30`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.
Chứng tỏ rằng giá trị mỗi biểu thức sau ko phụ thuộc vào giá trị của biến
A=x.(x^2+x+1)-x^2.(x+1)-x+5
B=3x.(x-5y)+(y-5x)-(3y-3).(x^2-y^2)-1
Tìm m
a) (x^2-x+1).x-(x+1).x^2+m=-2x^2+x+5
b) -x^29x^2+x+1)+2=-x^4-x^3-x^2-m
Câu 1:
\(A=x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
\(A=x^3+x^2+x-x^3-x^2-x+5\)
\(A=5\)
Vậy GT A ko phụ thuộc vào biến
B đề sai
Còn câu 2 mk ko hiêu g hết
A = x^3+x^2+x - x^3-x^2-x+5
A= ( x^3-x^3 ) + ( x^2 - x^2)+ ( x -x ) +5
A=0+0+0+5
A=5
Vậy giá trị của biểu thức bằng 5 không phụ thuộc vào giá trị của x .
Biểu thức B , làm tương tự nhé !!!
Tìm m :
a) ( x^2 -x +1) x -( x+1 ).x^2 + m = -2x^2+x+5
<=> x^3 -x^2 + x -x^3 - x^2 + m = -2x^2+x+5
<=> ( x^3 - x^3 ) -( x^2 + x^2 ) + x +m = -2x^2+x+5
<=> 0 - 2x^2 +x +m = -2x^2+x+5
<=> -2x^2 +x +m = -2x^2+x+5
<=> m = 5
Vậy m = 5.
Phần b tự làm bạn nhé !!
Chứng minh biểu thức sau không phụ thuộc vào x và y
\(3x\left(x-5y\right)+ \left(y-5x\right)\cdot\left(-3y\right)-1-3\left(x^2-y^2\right)\)
=3x^2 -15xy - 3y^2 + 15xy - 1 -3x^2 + 3y^2 =-1
vậy biểu thức không phụ thuộc vào biến
Chứng tỏ rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến: x(5x – 3) – x 2 (x – 1) + x( x 2 – 6x) – 10 + 3x
x(5x – 3) – x 2 (x – 1) + x( x 2 – 6x) – 10 + 3x
= x.5x + x.(- 3) – [ x 2 .x + x 2 .(-1)] + x. x 2 +x. (-6x) – 10 + 3x
= 5 x 2 – 3x – x 3 + x 2 + x 3 – 6 x 2 – 10 + 3x
= ( x 3 – x 3 ) + ( 5 x 2 + x 2 – 6 x 2 ) – (3x - 3x ) - 10
= - 10
Vậy biểu thức không phụ thuộc vào biến x.
1) x2-x-y2-y
2) x2 -y2 +x-y
3) 3x-3y+x2-y2
4) 5x-5y+x2-y2
5) x2-5x-y2-5y
6) x2-y2 +2x-2y
7) x2 -4y2+x+2y
8) x2-y2-2x-2y
9) x2 -4y2+2x+4y
1: \(x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
2: \(x^2-y^2+x-y\)
\(=\left(x^2-y^2\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+1\right)\)
3: \(3x-3y+x^2-y^2\)
\(=\left(3x-3y\right)+\left(x^2-y^2\right)\)
\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y+3\right)\)
4: \(5x-5y+x^2-y^2\)
\(=\left(5x-5y\right)+\left(x^2-y^2\right)\)
\(=5\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(5+x+y\right)\)
5: \(x^2-5x-y^2-5y\)
\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-5\right)\)
6: \(x^2-y^2+2x-2y\)
\(=\left(x^2-y^2\right)+\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+2\right)\)
7: \(x^2-4y^2+x+2y\)
\(=\left(x^2-4y^2\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+1\right)\)
8: \(x^2-y^2-2x-2y\)
\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
9: \(x^2-4y^2+2x+4y\)
\(=\left(x^2-4y^2\right)+\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+2\right)\)