Giai pt
\(x^2-4x+21=6\sqrt{2x+3}\)
giải pt :a,\(\left(2x+6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
Giải pt :\(x^2-4x+21=6\sqrt{2x+3}\)
giải pt :
a,\(2x^2-11x+21=3\sqrt[3]{4x-4}\)
b,\(\dfrac{\sqrt{x-3}}{\sqrt{2x-1}-1}=\dfrac{1}{\sqrt{x+3}-\sqrt{x-3}}\)
c,\(\left(\sqrt{x^2+x+1}+\sqrt{4x^2+x+1}\right)\left(\sqrt{5x^2+1}-\sqrt{2x^2+1}\right)=3x^2\)
GIAI PT
\(\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}=\sqrt{3}-x^2\)
Xét VT
ĐKXĐ \(-1\le x\le3\)
\(XH:\left(-x^2+4x+12\right)-\left(-x^2+2x+3\right)=2x+9\ge0\)
VT^2 = \(-x^2+4x+12-x^2+2x+3+2\sqrt{\left(-x^2+4x+12\right)\left(-x^2+2x+3\right)}\)
<=> \(VT^2=-2x^2+6x+15+2\sqrt{\left(x+2\right)\left(6-x\right)\left(x+1\right)\left(3-x\right)}\)
= \(\left(x+2\right)\left(3-x\right)+\left(6-x\right)\left(x+1\right)+2\sqrt{\left(x+2\right)\left(3-x\right)\left(6-x\right)\left(x+1\right)}+3\)
= \(\left(\sqrt{\left(x+2\right)\left(3-x\right)}+\sqrt{\left(6-x\right)\left(x+1\right)}\right)^2+3\ge3\)
=> VT \(\ge\sqrt{3}\) dấu '=' xảy khi \(\sqrt{\left(x+2\right)\left(3-x\right)}=\sqrt{\left(6-x\right)\left(x+1\right)}\)
<=> \(-x^2+x+6=-x^2+5x+6\Rightarrow x=0\)
VP = \(\sqrt{3}-x^2\le\sqrt{3}\)
dấu '=' xảy ra khi tai x = 0
Vậy VP = VT = căn 3 tại x = 0
GIAI PT
\(X^3+2X^2+6X+3=4\sqrt{5X-1}\\\)
\(X+Y+12=4X+6\sqrt{Y-1}\)
giai pt sau
\(\sqrt{3x-1}-\sqrt{x+2}.\sqrt{3x^2+7x+2}+4=4x-2\)
\(x^2-5x+3.\sqrt{2x-1}=2.\sqrt{14-2x}+5\)
\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
nhiều thế giải ko đổi đâu bạn
đkxđ : \(\frac{1}{2}\le x\le7\)
\(x^2-5x+3\sqrt{2x-1}=2\sqrt{14-2x}+5\)
\(\Leftrightarrow\left(x^2-5x\right)+3\left(\sqrt{2x-1}-3\right)=2\left(\sqrt{14-2x}-2\right)\)
\(\Leftrightarrow x\left(x-5\right)+\frac{3.\left(2x-10\right)}{\sqrt{2x-1}+3}+\frac{2.\left(2x-10\right)}{\sqrt{14-2x}+2}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+\frac{6}{\sqrt{2x-1}+3}+\frac{4}{\sqrt{14-2x}+2}\right)=0\)
\(\Leftrightarrow x=5\)
còn bài a,c lười đánh lắm
giai pt:
a) \(\sqrt{x^2-4x-12}=9-2x\)
b) \(\left(x+1\right)\sqrt[3]{15x^2-x-1}=x^2-1\)
c) \(\left(2x-2\right)\sqrt{2x-1}=6\left(x-1\right)\)
d) \(\frac{\sqrt{-x^2+4x-3}-1}{x-3}=2\)
e) \(\frac{5+\sqrt{x+1}}{x-2}=7\)
Đệ biết là có người làm câu c,d nên xin xí câu e :3
ĐK: \(\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)
\(PT\Leftrightarrow5+\sqrt{x+1}=7\left(x-2\right)\)
\(\Leftrightarrow\sqrt{x+1}=7x-19\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\x+1=49x^2-266x+361\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\49x^2-267x+360=0\end{matrix}\right.\)
\(\Rightarrow x=3\left(tm\right)\)
a/ \(\Leftrightarrow\left\{{}\begin{matrix}9-2x\ge0\\x^2-4x-12=\left(9-2x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{9}{2}\\3x^2-32x+93=0\end{matrix}\right.\)
Phương trình vô nghiệm
b/ \(\Leftrightarrow\left(x+1\right)\sqrt[3]{15x^2-x-1}-\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\sqrt[3]{15x^2-x-1}-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Rightarrow x=-1\\\sqrt[3]{15x^2-x-1}-x+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt[3]{15x^2-x-1}=x-1\)
\(\Leftrightarrow15x^2-x-1=x^3-3x^2+3x-1\)
\(\Leftrightarrow x^3-18x^2+4x=0\)
\(\Leftrightarrow x\left(x^2-18x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=9\pm\sqrt{77}\\\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow2\left(x-1\right)\sqrt{2x-1}-6\left(x-1\right)=0\)
\(\Leftrightarrow2\left(x-1\right)\left(\sqrt{2x-1}-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{2x-1}-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\2x-1=9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
d/ ĐKXĐ: \(1\le x< 3\)
\(\Leftrightarrow\sqrt{-x^2+4x-3}-1=2x-6\)
\(\Leftrightarrow\sqrt{-x^2+4x-3}=2x-5\) (\(x\ge\frac{5}{2}\))
\(\Leftrightarrow-x^2+4x-3=\left(2x-5\right)^2\)
\(\Leftrightarrow5x^2-24x+28=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2< \frac{5}{2}\left(l\right)\\x=\frac{14}{5}\end{matrix}\right.\)
e/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow5+\sqrt{x+1}=7x-14\)
\(\Leftrightarrow\sqrt{x+1}=7x-19\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\x+1=\left(7x-19\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\49x^2-267x+360=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\x=\frac{120}{49}< \frac{19}{7}\left(l\right)\end{matrix}\right.\)
GIẢI CÁC PT SAU:
\(\sqrt{5x+10}=8-x\)
\(\sqrt{4x^2+x-12}=3x-5\)
\(\sqrt{x^2-2x+6}=2x-3\)
\(\sqrt{3x^2-2x+6}+3-2x=0\)