cho a,b >0 , a+b=4ab
CMR:\(\frac{a}{4b^2+1}\)+\(\frac{b}{4a^2+1}\)≥\(\frac{1}{2}\)
cho a,b>0 thỏa mãn a+b=4ab. CMR
\(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)
vào tcn của tui ấn vào Thông kê hỏi đáp kéo xuống
Cho a,b>0 tm a+b=4ab Cm \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)
Từ \(a+b=4ab\Leftrightarrow\frac{1}{a}+\frac{1}{b}=4\)
\(\left(\frac{1}{a};\frac{1}{b}\right)\rightarrow\left(x;y\right)\)\(\Rightarrow\hept{\begin{cases}x+y=4\\\frac{x^2}{4y+x^2y}+\frac{y^2}{4x+xy^2}\ge\frac{1}{2}\end{cases}}\)
C-S: \(VT\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy\left(x+y\right)}\)\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+\left(x+y\right)\cdot\frac{\left(x+y\right)^2}{4}}=\frac{1}{2}\)
Cho a,b là các số thực dương thỏa mãn a + b = 4ab
CMR: \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)
Mong các bạn giúp mình sớm.
\(a+b=4ab\le\left(a+b\right)^2\)
\(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}=\frac{a^2}{4b^2a+a}+\frac{b^2}{4a^2b+b}\)
\(\ge\frac{\left(a+b\right)^2}{4ab\left(a+b\right)+\left(a+b\right)}=\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)}\ge\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)^2}=\frac{1}{2}\)
\("="\Leftrightarrow a=b=\frac{1}{2}\)
Cho a,b>0 tm: a+b=4ab
CMR: \(\frac{\sqrt{a^2+4b^2}}{ab}+\frac{\sqrt{b^2+4a^2}}{ab}\ge4\sqrt{5}\)
Giúp mình mấy câu này với nhé các ban.
1) Cho a,b,c>0 cmr:\(\frac{a}{\sqrt{a^2+b^2}}+\frac{b}{\sqrt{b^2+c^2}}+\frac{c}{\sqrt{c^2+a^2}}\le\frac{3}{\sqrt{2}}\)
2)Cho a,b,c>0 và abc=1. Cmr:\(\sqrt{\frac{a}{4a+4b+1}}+\sqrt{\frac{b}{4b+4c+1}}+\sqrt{\frac{c}{4c+4a+1}}\le1\)
3)Cho a,b,c>0 tm a+b+c=3 Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
Mình cảm ơn các bạn nhiều
Bài 1:
Đặt \(a^2=x;b^2=y;c^2=z\)
Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)
Áp dụng BĐT cô si ta có:
\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)
\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)
Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)
Cộng lại ta được:
\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)
Sau đó bình phương hai vế rồi
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng
Vậy...
Bài 2:
Trước hết ta chứng minh bất đẳng thức sau:
\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)
Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau:
\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)
\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)
\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)
Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)
Từ đó ta có:
\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)
Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có
\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)
Dấu = xảy ra khi a=b=c
c bạn tự làm nhé mình mệt rồi :D
Cho a,b,c>0 và abc=1.CMR: \(\frac{c^2}{4c^2+b^2c^2+1}+\frac{b^2}{4b^2+b^2a^2+1}+\frac{a^2}{4a^2+a^2c^2+1}\le\frac{1}{2}\)
Cho a, b là các số thực dương thỏa mãn a + b = 4ab
Tìm GTNN của biểu thức \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}\)
Ta có: \(\frac{a}{1+4b^2}=\frac{a\left(1+4b^2\right)-4ab^2}{1+4b^2}=a-\frac{4ab^2}{1+4b^2}\ge a-\frac{4ab^2}{2\sqrt{4b^2.1}}=a-\frac{2ab^2}{2b}=a-ab\)(bđt cosi)
CMTT: \(\frac{b}{1+4a^2}\ge b-ab\)
=> P \(\ge a+b-2ab=4ab-2ab=2ab\)
Mặt khác ta có: \(a+b\ge2\sqrt{ab}\)(cosi)
=> \(4ab\ge2\sqrt{ab}\) <=> \(2ab\ge\sqrt{ab}\)<=> \(4a^2b^2-ab\ge0\) <=> \(ab\left(4ab-1\right)\ge0\)
<=> \(\orbr{\begin{cases}ab\le0\left(loại\right)\\ab\ge\frac{1}{4}\end{cases}}\)(vì a,b là số thực dương)
=> P \(\ge2\cdot\frac{1}{4}=\frac{1}{2}\)
Dấu "=" xảy ra <=> a = b = 1/2
Vậy MinP = 1/2 <=> a = b= 1/2
Ta có: \(a+b=4ab\le\left(a+b\right)^2\Leftrightarrow\left(a+b\right)\left[\left(a+b\right)-1\right]\ge0\)
Mà \(a+b>0\Rightarrow a+b\ge1\)
Áp dụng BĐT Cô-si, ta có: \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}=\left(a-\frac{4ab^2}{1+4b^2}\right)+\left(b-\frac{4a^2b}{1+4a^2}\right)\)\(\ge\left(a-\frac{4ab^2}{4b}\right)+\left(b-\frac{4a^2b}{4a}\right)=\left(a+b\right)-2ab=\left(a+b\right)-\frac{a+b}{2}=\frac{a+b}{2}\ge\frac{1}{2}\)
Đẳng thức xảy ra khi a = b = 1/2
\(\text{Cho }a,b,c>0\text{ thỏa mãn }a+b+c=3\)
\(\text{CMR: }\frac{1+b}{1+4a^2}+\frac{1+c}{1+4b^2}+\frac{1+a}{1+4c^2}\ge\frac{6}{5}\)
Cho a,c,b dương thỏa mãn \(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=12\left(\frac{1}{a^2+b^2+c^2}\right)\)
CMR \(\frac{1}{4A+B+C}+\frac{1}{4B+A+C}+\frac{1}{AC+A+B}\le\frac{1}{6}\)