Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần xuân quyến
Xem chi tiết
Thắng Nguyễn
13 tháng 5 2018 lúc 22:44

vào tcn của tui ấn vào Thông kê hỏi đáp kéo xuống

trần xuân quyến
14 tháng 5 2018 lúc 18:08

là thế nào bạn ơi

Đặng Thanh Quang
Xem chi tiết
Thắng Nguyễn
11 tháng 5 2018 lúc 21:05

Từ \(a+b=4ab\Leftrightarrow\frac{1}{a}+\frac{1}{b}=4\)

\(\left(\frac{1}{a};\frac{1}{b}\right)\rightarrow\left(x;y\right)\)\(\Rightarrow\hept{\begin{cases}x+y=4\\\frac{x^2}{4y+x^2y}+\frac{y^2}{4x+xy^2}\ge\frac{1}{2}\end{cases}}\)

C-S: \(VT\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy\left(x+y\right)}\)\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+\left(x+y\right)\cdot\frac{\left(x+y\right)^2}{4}}=\frac{1}{2}\)

Pham Van Hung
Xem chi tiết
Girl
23 tháng 2 2019 lúc 19:10

\(a+b=4ab\le\left(a+b\right)^2\)

\(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}=\frac{a^2}{4b^2a+a}+\frac{b^2}{4a^2b+b}\)

\(\ge\frac{\left(a+b\right)^2}{4ab\left(a+b\right)+\left(a+b\right)}=\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)}\ge\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)^2}=\frac{1}{2}\)

\("="\Leftrightarrow a=b=\frac{1}{2}\)

Pham Van Hung
23 tháng 2 2019 lúc 19:17

Cảm ơn bạn nhé.

việt anh
Xem chi tiết
Kudo Shinichi
Xem chi tiết
Thắng Nguyễn
2 tháng 7 2016 lúc 13:25

Bài 1:

Đặt \(a^2=x;b^2=y;c^2=z\)

Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)

Áp dụng BĐT cô si ta có:

\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)

\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)

Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)

Cộng lại ta được:

\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)

Sau đó bình phương hai vế rồi

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng

Vậy...

Bài 2:

Trước hết ta chứng minh bất đẳng thức sau:

\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)

Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau: 

\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)

\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)

\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)

Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)

Từ đó ta có:

\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)

Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có 

\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)

Dấu = xảy ra khi a=b=c 

c bạn tự làm nhé mình mệt rồi :D

Nguyễn Xuân Sáng
2 tháng 7 2016 lúc 19:38

- Ôi má ơi, má patient dử dậy :)

Baek Hyun
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Edogawa Conan
3 tháng 2 2021 lúc 5:39

Ta có: \(\frac{a}{1+4b^2}=\frac{a\left(1+4b^2\right)-4ab^2}{1+4b^2}=a-\frac{4ab^2}{1+4b^2}\ge a-\frac{4ab^2}{2\sqrt{4b^2.1}}=a-\frac{2ab^2}{2b}=a-ab\)(bđt cosi)

CMTT: \(\frac{b}{1+4a^2}\ge b-ab\)

=> P \(\ge a+b-2ab=4ab-2ab=2ab\)

Mặt khác ta có: \(a+b\ge2\sqrt{ab}\)(cosi)

=> \(4ab\ge2\sqrt{ab}\) <=> \(2ab\ge\sqrt{ab}\)<=> \(4a^2b^2-ab\ge0\) <=> \(ab\left(4ab-1\right)\ge0\)

<=> \(\orbr{\begin{cases}ab\le0\left(loại\right)\\ab\ge\frac{1}{4}\end{cases}}\)(vì a,b là số thực dương)

=> P \(\ge2\cdot\frac{1}{4}=\frac{1}{2}\)

Dấu "=" xảy ra <=> a = b = 1/2

Vậy MinP = 1/2 <=> a = b= 1/2

Khách vãng lai đã xóa
Kiệt Nguyễn
3 tháng 2 2021 lúc 11:03

Ta có: \(a+b=4ab\le\left(a+b\right)^2\Leftrightarrow\left(a+b\right)\left[\left(a+b\right)-1\right]\ge0\)

Mà \(a+b>0\Rightarrow a+b\ge1\)

Áp dụng BĐT Cô-si, ta có: \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}=\left(a-\frac{4ab^2}{1+4b^2}\right)+\left(b-\frac{4a^2b}{1+4a^2}\right)\)\(\ge\left(a-\frac{4ab^2}{4b}\right)+\left(b-\frac{4a^2b}{4a}\right)=\left(a+b\right)-2ab=\left(a+b\right)-\frac{a+b}{2}=\frac{a+b}{2}\ge\frac{1}{2}\)

Đẳng thức xảy ra khi a = b = 1/2

Khách vãng lai đã xóa
sjbjscb
Xem chi tiết
Phạm Minh Quang
5 tháng 10 2019 lúc 23:26

@Nguyễn Việt Lâm

Phạm Minh Quang
5 tháng 10 2019 lúc 23:27

@Vũ Minh Tuấn

Love
Xem chi tiết