Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dang Thi Xuan
Xem chi tiết
Phạm Hoàng Nghĩa
6 tháng 4 2017 lúc 20:02

(Đây là mẹo khi làm những dạng bài cm vô nghiệm:thường ta sẽ tách đôi hạng tử  bậc lẻ ( ở đa thức này là -3x) và biến đổi thành bình phương của 1 số cộng với 1 số khác lớn hơn 0)

Cách làm nó như thế này:

Ta có : A =  x^2 - 3x +5

= x^2 - 3/2.x - 3/2.x + 5

= x(x-3/2)  - 3/2.x + 5

( lúc này để có bình phương, ta sẽ tách thằng 5 ra.)

A= x(x-3/2) - 3/2. x  +(3/2. 3/2 + 3,75)

= x(x-3/2) - 3/2(x-3/2) + 3,75

=(x-3/2)^2 + 3,75

=> A >0

Vậy đa thức A vô nghiệm

Le Thanh Huyen
Xem chi tiết
dcv_new
19 tháng 4 2020 lúc 8:51

\(x^2+x+2=x^2+2.x+1+1-x=x^2+2.x.1+1^2+1-x\)

\(=\left(x+1\right)^2+1-x\)

Mk chỉ lm đc vậy thôi

Khách vãng lai đã xóa
Nobi Nobita
19 tháng 4 2020 lúc 9:22

\(x^2+x+2=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{7}{4}\)

\(=\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)

\(\Rightarrow\)Đa thức đã cho vô nghiệm ( đpcm )

Khách vãng lai đã xóa
Trần Quang Vũ
Xem chi tiết
Kirigaya Kazuto
15 tháng 5 2017 lúc 16:22

Cho 2x-3 =0

=> 2x-3 =0

2x=3

x= 3/2

lê thị hương giang
15 tháng 5 2017 lúc 16:56

Hỏi đáp Toán

Sáng
15 tháng 5 2017 lúc 20:18

* Xét \(2x-3=0\)

\(\Rightarrow2x=3\)

\(\Rightarrow x=\dfrac{3}{2}\)

Vậy, ...

* Xét \(x^4+2x^2-3=0\)

\(\Rightarrow\left(-3+-1x^2\right)\left(1+-1x^2\right)=0\)

\(\Rightarrow\left(-3+-1x^2\right)\left[\left(1+x\right)\left(1+-1x\right)\right]=0\)

\(\Rightarrow-3+-1x^2=0\)

\(\Rightarrow-1x^2=3\)

\(\Rightarrow x^2=-3\)

\(x^2\ge0\)\(-3< 0\) nên đa thức trên vô nghiệm.

Nguyễn Hải Nam
Xem chi tiết
o0o I am a studious pers...
21 tháng 6 2016 lúc 20:45

\(x^2+2x+3=0\)

\(=>\hept{\begin{cases}x^2=0\\2x=0\\3=0\end{cases}}\)

\(=>\hept{\begin{cases}x=0\\x=0\\3\end{cases}=>0+0+3\ne0}\)

=> \(x^2+2x+3\)vô nghiệm

Trà My
21 tháng 6 2016 lúc 20:51

\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)

Ta có: \(\left(x+1\right)^2\ge0\) với mọi \(x\in R\)

\(\Rightarrow\left(x+1\right)^2+2\ge2>0\)với mọi \(x\in R\)

\(\Rightarrow x^2+2x+3>0\) với mọi \(x\in R\)

Vậy đa thức \(f\left(x\right)=x^2+2x+3\) vô nghiệm

Trà My
21 tháng 6 2016 lúc 20:54

What là gì: chứng minh lung tung

Lê Hiển Vinh
Xem chi tiết
Huỳnh Diệu Bảo
2 tháng 5 2017 lúc 9:49

tại f(x) = x2 -x -x + 2 =0 ta có
x(x-1) -(x-1) +1 =0
(x-1)(x-1) +1 =0
(x-1)2 +1 =0          (1)
Vì (x-1)2 \(\ge\)0
nên \(\left(x-1\right)^2+1\ge1>0\)
Vậy (1) là vô lí
Do đó đa thức f(x) = x^2 -x -x +2 vô nghiệm 
 

NO NAME
Xem chi tiết
NO NAME
Xem chi tiết
Mai Thanh Tâm
21 tháng 4 2016 lúc 21:41

Giả sử đa thức R(x) tồn tại một nghiệm n nào đó, n là số thực

Khi đó: R(x) = x^8 -x^5 + x^2 -x +1 = 0

                     (x^8 + x^2 ) -( x^5 + x) = -1 (**)

Vì  (x^8 + x^2 ) > ( x^5 + x) nên  (x^8 + x^2 ) -( x^5 + x)  luôn lớn hơn 0 trái với (**)

Vậy đa thức R(x) vô nghiệm

Đức Nguyễn Ngọc
21 tháng 4 2016 lúc 21:41

Ta có: x^8-x^5+x^2-x+1 = (x+x^2+x^5)-x^5+x^2-x+1 = (x^5-x^5)+(x^2+x^2)+(x-x)+1 = 0+2x^2+0+1 = 2x^2+1

Vì 2x^2 \(\ge\)  0 nên 2x^2+1 \(\ge\) 1

Vậy R(x) không có nghiệm

Chúc bạn hoc tốt! k mik nha

Vũ Duy Hoàng
Xem chi tiết
Phạm Tuấn Đạt
26 tháng 3 2018 lúc 9:59

Áp dụng hằng đẳng thức đáng nhớ ta có :

x4+2x2+1=(x2+1)2

Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0

=>PT trên vô nghiệm

Phạm Xuân Nguyên
26 tháng 3 2018 lúc 9:24

Theo hằng đẳng thức đáng nhớ , ta có :

\(x^4+2x^2+1=\left(x^2+1\right)^2\)

Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)

\(\Rightarrow\left(x^2+1\right)^2>0\)

Vậy phương trình vô nghiệm.

minh anh
Xem chi tiết
minh mọt sách
13 tháng 5 2015 lúc 8:48

-x^2 và x không thể là 2 số đối nhau(chẳng hạn -5^2 và 5) vậy lời giải của bạn sai