Cho đường tròn (C): x2+y2=4, viết các phương trình tiếp tuyến của đường tròn đi qua điểm A(2;3)
Cho đường tròn (C) có phương trình x 2 + y 2 + 4 x - 2 y - 4 = 0 và điểm M(1; 2). Số tiếp tuyến của đường tròn đi qua M là
A.0
B.1
C.2
D.4
Đường tròn (C): x 2 + y 2 + 4 x − 2 y − 4 = 0 có tâm I(-2; 1) và bán kính R = 3.
Ta có : I M = 1 + 2 2 + 2 − 1 2 = 10 > 3 nên M nằm ngoài đường tròn.
Qua M kẻ được hai tiếp tuyến đến đường tròn.
ĐÁP ÁN C
Cho đường tròn (C) có phương trình x 2 + y 2 + 3 x − 5 - 2 = 0 và điểm M(-2; 1). Số tiếp tuyến của đường tròn đi qua M là
A.0
B.1
C.2
D.4
Đường tròn đã cho có tâm I − 3 2 ; 5 2
Bán kính đường tròn là: R = − 3 2 2 + 5 2 2 + 2 = 21 2
Độ dài I M = − 2 + 3 2 2 + 1 − 5 2 2 = 5 2 < R
Do đó, điểm M nằm trong đường tròn.
Qua M không kẻ được tiếp tuyến nào đến đường tròn.
ĐÁP ÁN A
Cho đường tròn C có phương trình: x2 + y2 – 4x + 8y – 5 = 0
a, Tìm tọa độ tâm và bán kính của (C)
b, Viết phương trình tiếp tuyến với (C) đi qua điểm A(-1; 0)
c, Viết phương trình tiếp tuyến với (C) vuông góc với đường thẳng: 3x – 4y + 5 = 0.
a) x2 + y2 – 4x + 8y – 5 = 0
⇔ (x2 – 4x + 4) + (y2 + 8y + 16) = 25
⇔ (x – 2)2 + (y + 4)2 = 25.
Vậy (C) có tâm I(2 ; –4), bán kính R = 5.
b) Thay tọa độ điểm A vào phương trình đường tròn ta thấy:
(–1 – 2)2 + (0 + 4)2 = 32 + 42 = 52= R2
⇒ A thuộc đường tròn (C)
⇒ tiếp tuyến (d’) cần tìm tiếp xúc với (C) tại A
⇒ (d’) là đường thẳng đi qua A và vuông góc với IA
⇒ (d’) nhận là một vtpt và đi qua A(–1; 0)
⇒ phương trình (d’): 3(x + 1) – 4(y - 0)= 0 hay 3x – 4y + 3 = 0.
c) Gọi tiếp tuyến vuông góc với (d) : 3x – 4y + 5 = 0 cần tìm là (Δ).
(d) có là một vtpt; 1 VTCP là ud→(4; 3)
(Δ) ⊥ (d) ⇒ (Δ) nhận là một vtpt
⇒ (Δ): 4x + 3y + c = 0.
(C) tiếp xúc với (Δ) ⇒ d(I; Δ) = R
Vậy (Δ) : 4x + 3y + 29 = 0 hoặc 4x + 3y – 21 = 0.
bài 2. viết phương trình tiếp tuyến của đường tròn (c):x2+y2−2x-4y−3=0 biết tiếp tuyến đi qua m(3;4).
Phương trình tiếp tuyến của đường tròn x 2 + y 2 = 4 và đi qua điểm (1;2) là:
A. y - 2 = 0
B. 4x + 3y - 10 = 0
C. 3x + 4y - 10 = 0
D. y - 2 = 0 và 4x + 3y - 10 = 0
Đáp án: D
Phương trình đường thẳng d đi qua điểm (1;2) có dạng: a(x - 1) + b(y - 2) = 0
Ta có:
Vì d tiếp xúc với (C) nên: d(I;d) = R
⇔ a 2 + 4ab + 4 b 2 = 4 a 2 + 4 b 2 ⇔ 3 a 2 - 4ab = 0
⇔ a(3a - 4b) = 0
Với a = 0 chọn b = 1 ⇒ d: y - 2 = 0
Với 3a = 4b chọn a = 4, b = 3 ⇒ d: 4(x - 1) + 3(y - 2) = 0 ⇔ 4x + 3y - 10 = 0
Cho đường tròn (C) có phương trình x 2 + y 2 + 4 x − 2 y − 4 = 0 và điểm M(-2; 4) nằm trên đường tròn. Phương trình tiếp tuyến của đường tròn tại M là:
A.x + y – 2 = 0
B.2x + y = 0
C.x = - 2
D. y = 4
x 2 + y 2 + 4 x − 2 y − 4 = 0 và điểm M(-2; 4)
Đường tròn (C): x 2 + y 2 + 4 x - 2 y - 4 = 0 có tâm I(-2;1) và bán kính R = ( − 2 ) 2 + 1 2 + 4 = 3
Phương trình tiếp tuyến tại M(- 2; 4) và nhận I M → ( 0 ; 3 ) làm VTPT là:
0( x +2) + 3 (y – 4) = 0 hay y = 4
ĐÁP ÁN D
Cho đường tròn (C) có phương trình x 2 + y 2 − 4 x + 2 y − 4 = 0 . Một phương trình tiếp tuyến của đường tròn kẻ từ điểm M(-4; 2) là
A. – 4x + 3y – 22 = 0
B. 4x + 3y + 10 = 0
C. 3x + 4y + 4 = 0
D.3x – 4y +20 = 0
ĐÁP ÁN B
Đường tròn (C): x 2 + y 2 - 4 x + 2 y – 4 = 0 có tâm I(2; -1) và bán kính R = 2 2 + ( − 1 ) 2 + 4 = 3
Tiếp tuyến qua M( -4; 2) và nhận n → ( a ; b ) làm VTPT có phương trình :
a( x+ 4) + b (y – 2)= 0 hay ax + by + 4a – 2b = 0 (*)
Khoảng cách từ tâm I đến tiếp tuyến bằng bán kính nên ta có:
d ( I ; d ) = R ⇔ 2 a − b + 4 a − 2 b a 2 + b 2 = 3 ⇔ 6 a − 3 b a 2 + b 2 = 3 ⇔ 2 a − b a 2 + b 2 = 1 ⇔ 2 a − b = a 2 + b 2 ⇔ 4 a 2 − 4 a b + b 2 = a 2 + b 2 ⇔ 3 a 2 − 4 a b = 0 ⇔ a ( 3 a − 4 b ) = 0 ⇔ a = 0 3 a = 4 b
* Nếu a= 0 , chọn b= 1 thay vào (*) ta có phương trình tiếp tuyến là: y – 2= 0
* Nếu 3a = 4b, chọn a = 4 thì b = 3 thay vào (*) ta có phương trình tiếp tuyến là:
4x + 3y + 10 = 0
Vậy có 2 tiếp tuyến qua M là: y – 2= 0 và 4x +3y + 10= 0
Cho đường tròn (C): x 2 + y 2 - 2x - 4y - 4 = 0. Phương trình tiếp tuyến của đường tròn tại điểm A(1;-1) là:
A. x + 1 = 0
B. y + 1 = 0
C. x + y + 1 = 0
D. x - y + 1 = 0
Đáp án: B
(C): x 2 + y 2 - 2x - 4y - 4 = 0 ⇔ (x - 1 ) 2 + (y - 2 ) 2 = 9
Đường tròn (C) có tâm I(1;2)
Tiếp tuyến của đường tròn tại A là đường thẳng đi qua A và nhận IA làm vecto pháp tuyến: -3(y + 1) = 0 ⇔ y + 1 = 0
Cho đường tròn (C) có phương trình x 2 + y 2 - 2 x + 4 y + 4 = 0 và điểm A(5; -5). Góc α của các tiếp tuyến với đường tròn (C) kẻ từ A thỏa mãn
A. sin α 2 = 1 5
B. sin α = 1 5
C. cos α 2 = 1 5
D. cos α = 2 5
a) viết phương trình đường tròn (C) có tâm I(2,3) đi qua điểm A(5,7) b) viết phương trình tiếp tuyến của đường tròn (C) : (x-1)^2 + ( y+5)^2 =4 . Biết tiếp tuyến song song với đường thẳng (d) 3x + 4y - 1 =0
a) Để tìm phương trình đường tròn © có tâm I(2,3) đi qua điểm A(5,7), ta sử dụng công thức khoảng cách từ điểm đến tâm đường tròn:
$I\hat{A} = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2}$
Với I là tâm đường tròn, A là điểm trên đường tròn.
Ta có: $x_I = 2$, $y_I = 3$, $x_A = 5$, $y_A = 7$
Thay vào công thức ta được:
$\sqrt{(5-2)^2 + (7-3)^2} = \sqrt{34}$
Vậy bán kính của đường tròn là $\sqrt{34}$.
Phương trình đường tròn © có tâm I(2,3) và bán kính $\sqrt{34}$ là:
$(x-2)^2 + (y-3)^2 = 34$
b) Để tìm phương trình tiếp tuyến của đường tròn © : $(x-1)^2 + ( y+5)^2 =4$, ta cần tìm đạo hàm của phương trình đường tròn tại điểm cần tìm tiếp tuyến.
Ta có phương trình đường tròn chính giữa:
$(x-1)^2 + (y+5)^2 = 2^2$
Đạo hàm hai vế theo x:
$2(x-1) + 2(y+5)y' = 0$
Suy ra:
$y' = -\frac{x-1}{y+5}$
Tại điểm M(x,y) trên đường tròn, ta có:
$(x-1)^2 + (y+5)^2 = 2^2$
Đạo hàm hai vế theo x:
$2(x-1) + 2(y+5)y' = 0$
Suy ra:
$y' = -\frac{x-1}{y+5}$
Vậy tại điểm M(x,y), phương trình tiếp tuyến của đường tròn là:
$y - y_M = y'(x-x_M)$
Thay $y'$ bằng $\frac{-(x-1)}{y+5}$ và $x_M$, $y_M$ bằng 1, -5 ta được:
$y + 5 = \frac{-(x-1)}{y+5}(x-1)$
Simplifying:
$x(y+5) + y(x-1) = 6$
Đường thẳng (d) có phương trình là $3x + 4y - 1 = 0$. Vì tiếp tuyến song song với đường thẳng (d) nên hệ số góc của tiếp tuyến