Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 12 2018 lúc 8:07

Tính được S =  2 πa 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 1 2018 lúc 5:54

Dựng GH vuông góc EF.

Giải bài 44 trang 130 SGK Toán 9 Tập 2 | Giải toán lớp 9

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 5 2018 lúc 4:26

a,  V h t A B C D = π AB 2 2 . BC =  π AB 3 4 = π 2 2 . R 3 (1)

V h c = 4 3 πR 3 (2)

V h n = 1 3 π EF 2 2 . GH = 1 8 3 π . EF 3 . Tính được GO =  3 R

=>  V h n = 1 8 3 π 3 3 R 3 = 3 8 πR 3 (3)

Từ (1), (2) và (3) => ĐPCM

b,  S t p h t = 3 πR 2 (4);  S h c = 4 πR 2 (5)

S t p h n = 3 4 πEF 2 = 3 4 π . 3 R 2 = 9 4 πR 2 (6)

Từ (4); (5) và (6) => ĐPCM

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 7 2018 lúc 15:10

 Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 5 2019 lúc 17:19

Đáp án A

Ta có đường tròn ngoại tiếp tam giác ABC có tâm là trung điểm BC

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 4 2018 lúc 14:07

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 8 2019 lúc 3:28

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 11 2017 lúc 18:19

Chọn A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 8 2017 lúc 16:20

Sách Giáo Khoa
Xem chi tiết
Thien Tu Borum
17 tháng 4 2017 lúc 16:51

Hướng dẫn trả lời:

Hình a.

V=π(12,62)2.8,4+12.43π(12,62)3=13π(6,9)2.(8,4+12,63)=500,094π(cm3)V=π(12,62)2.8,4+12.43π(12,62)3=13π(6,9)2.(8,4+12,63)=500,094π(cm3)

Vậy Vhình a = 500,094π cm3

Hình b.

V=13π(6,9)2.20+12.43π.(6,9)3=13π(6,9)2(20+13,8)=536,406π(cm3)V=13π(6,9)2.20+12.43π.(6,9)3=13π(6,9)2(20+13,8)=536,406π(cm3)

Vậy Vhình b = 536, 406π cm3

Hình c.

V=13π.22.4+π.22.4+12.43π.23=4.22.π(13+1+13)=80π3(cm3)V=13π.22.4+π.22.4+12.43π.23=4.22.π(13+1+13)=80π3(cm3)

Vậy Vhình c =

Thien Tu Borum
17 tháng 4 2017 lúc 16:53

Cho hình vuông ABCD nội tiếp đường tròn tâm O, bán kính R và GEF là tam giác đều nội tiếp đường tròn đó, EF là dây song song với AB (h.119). Cho hình đó quay quanh trục GO. Chứng minh rằng:

a) Bình phương thể tích của hình trụ sinh ra bởi hình vuông bằng tích của thể tích hình cầu sinh ra bởi hình tròn và thể tích hình nón do tam giác đều sinh ra.

b) Bình phương diện tích toàn phần của hình trụ bằng tích của diện tích hình cầu và diện tích toàn phần của hình nón.

Hướng dẫn trả lời:

a) Thể tích hình trụ được tạo bởi hình vuông ABCD là:

V=π(AB2)2.BCV=π(AB2)2.BC với AB là đường chéo của hình vuông có cạnh là R và AB = R√2 (=BC)

V=π(R√22)2.R√2=π.2R24.R√2=πR3√22⇒V2=(πR3√222)=2π2R62(1)V=π(R22)2.R2=π.2R24.R2=πR322⇒V2=(πR3222)=2π2R62(1)

Thể tích hình cầu có bán kính R là: V1=43πR3V1=43πR3

Thể tích hình nón có bán kính đường tròn đáy bằng EF2EF2 là:

V2=13π(EF2)2.GHV2=13π(EF2)2.GH

Với EF = R√3 (cạnh tam giác đều nội tiếp trong đường tròn (O;R))

GH=EF√32=R√3.√32=3R2GH=EF32=R3.32=3R2

Thay vào V2, ta có: V2=13π(R√32)2.3R2=38πR3V2=13π(R32)2.3R2=38πR3

Ta có: V1V2=43πR3.38πR3=π2R62(2)V1V2=43πR3.38πR3=π2R62(2)

So sánh (1) và (2) ta được : V2 = V1. V2

b) Diện tích toàn phần của hình trụ có bán kính AB2AB2 là:

S=2π(AB2).BC+2π(AB2)2S=2π.R√22R√2+2π(R√22)2S=2πR2+πR2=3πR2⇒S2=(3πR2)2=9π2.R4(1)S=2π(AB2).BC+2π(AB2)2S=2π.R22R2+2π(R22)2S=2πR2+πR2=3πR2⇒S2=(3πR2)2=9π2.R4(1)

Diện tích mặt cầu có bán kính R là: S1 = 4πR2 (2)

Diện tích toàn phần của hình nón là:

S2=πEF2.FG+π(EF2)2=πR√32.R√3+π(R√32)2=9πR24S2=πEF2.FG+π(EF2)2=πR32.R3+π(R32)2=9πR24

Ta có: S1S2=4πR2.9πR24=9π2R4(2)S1S2=4πR2.9πR24=9π2R4(2)

So sánh (1) và (2) ta có: S2 = S1. S2