Cho A = 51n + 47102 (n thuộc N )Chứng minh rằng A chia hết cho 10
Cho A = 51^n + 47^102 ( n thuộc N )
Chứng minh rằng A chia hết cho 10
Ta có:
\(51^n\equiv1\left(mod10\right)\)
\(47^2\equiv-1\left(mod10\right)\)
\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)
\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)
\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)
A = 51n + 47102
A = (...1) + 47100.472
A = (...1) + (474)25.(...9)
A = (...1) + (...1)25.9
A = (...1) + (...1).9
A = (...1) + (...9)
\(A=\left(...0\right)⋮10\left(đpcm\right)\)
Chứng minh rằng A = 51n + 47102 [n thuộc N] chia hết cho 10
Chứng minh rằng :
A = 51n + 47102 [ n thuộc N ] chia hết cho 10
ta có 47102 thì ta so sánh chữ số cuối thì thành 72 thì sẽ có tận cùng là 9 (72 =49)
mà 51n bao giờ cũng có tận cùng là 1
=>......1+........9= ......10 chia hết cho 10
Ta có :
\(51^n\equiv1\left(mod10\right)\)
\(47^2\equiv-1\left(mod10\right)\)
\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)
\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)
\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)
Chứng tỏ rằng A=51n+47102(n thuộc N) chia hết cho 10
4. chứng minh rằng
a) CMR tổng 5 số tự nhiên chia hết cho 5
b)CMR n2+n chia hết cho 2 với n thuộc N
c) CMR a2b + b2a chia hết cho 2 với a,b thuộc N
d) CMR 51n + 47102 chia hết cho 10 (n thuộc N)
CMR: chứng minh rằng
a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4
Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4
= (a+a+a+a+a) + (1+2+3+4)
= 5a + 10
= 5(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên chia hết cho 5
Chứng minh rằng
a) A = 51n + 47 102 (n thuộc N) chia hết cho 10. b) B = 175 + 244 - 1321 chia hết cho 10
giúp mình làm với (ghi rõ cách tính hộ mình nx nha)
a) Ta có : 51n=\(\overline{...1}\)
47102=472.(474)25=\(\left(\overline{...9}\right).\left(\overline{...1}\right)=\overline{...9}\)
\(\Rightarrow51^n+47^{102}=\left(\overline{...1}\right)+\left(\overline{...9}\right)=\overline{...0}⋮10\)
Vậy 51n+47102\(⋮\)10.
b) Ta có : \(17^5=17.17^4=17.\left(\overline{...1}\right)=\overline{...7}\)
\(24^4=\overline{...6}\)
\(13^{21}=13.\left(13^4\right)^5=13.\left(\overline{...1}\right)=\overline{...3}\)
\(\Rightarrow17^5+24^4-13^{21}=\left(\overline{...7}\right)+\left(\overline{...6}\right)-\left(\overline{...3}\right)=\overline{...0}⋮10\)
Vậy 175+244+1321\(⋮\)10
CTR A = 51^n + 47^102 ( n thuộc N ) chia hết cho 10
Cho A = \(51^n+47^{102}\) (n \(\in\) N) . Chứng minh A chia hết cho 10
Ta có:
\(A=51^n+47^{102}\)
\(\Rightarrow A=\overline{...1}+47^{100}.47^2\)
\(\Rightarrow A=\overline{...1}+\left(47^4\right)^{25}.\left(\overline{...9}\right)\)
\(\Rightarrow A=\overline{...1}+\left(\overline{...1}\right)^{25}.\left(\overline{...9}\right)\)
\(\Rightarrow A=\overline{...1}+\left(\overline{...1}\right).\left(\overline{...9}\right)\)
\(\Rightarrow A=\overline{...1}+\overline{...9}\)
\(\Rightarrow A=\overline{...0}\)
Vì \(\overline{....0}\text{⋮}10\) nên \(A\text{⋮}10\)
Vậy \(A\text{⋮}10\left(đpcm\right)\)
chứng minh A chia hết cho 10:
51n+47102
47102 có chữ số tân cùng là 9
51n có tận cùng là 1
=> 51n + 47102 có chữ số tận cùng là 0
=>A chia hết cho 10