Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thị Thanh Thanh
Xem chi tiết
soyeon_Tiểubàng giải
10 tháng 10 2016 lúc 11:49

Ta có:

\(51^n\equiv1\left(mod10\right)\)

\(47^2\equiv-1\left(mod10\right)\)

\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)

soyeon_Tiểubàng giải
10 tháng 10 2016 lúc 13:01

A = 51n + 47102

A = (...1) + 47100.472

A = (...1) + (474)25.(...9)

A = (...1) + (...1)25.9

A = (...1) + (...1).9

A = (...1) + (...9)

\(A=\left(...0\right)⋮10\left(đpcm\right)\)

Nguyễn Tú Akp05
Xem chi tiết
Nguyễn Tú Akp
Xem chi tiết
huy naruto
21 tháng 10 2016 lúc 21:24

ta có 47102 thì ta so sánh chữ số cuối thì  thành 72 thì sẽ có tận cùng là 9 (72 =49)

mà 51n bao giờ cũng có tận cùng là 1

=>......1+........9= ......10 chia hết cho 10

minhduc
24 tháng 10 2017 lúc 19:38

Ta có :

\(51^n\equiv1\left(mod10\right)\)

\(47^2\equiv-1\left(mod10\right)\)

\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)

Phạm Bảo Chi
13 tháng 9 2018 lúc 12:52

bài này...ko bít làm

Như Thanh
Xem chi tiết
Fatasio
Xem chi tiết
Ngân Đặng Bảo
11 tháng 7 2018 lúc 9:38

a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4

Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4

= (a+a+a+a+a) + (1+2+3+4)

= 5a + 10

= 5(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên chia hết cho 5

Nguyễn Hoàng Dũng
Xem chi tiết
.
16 tháng 2 2020 lúc 21:42

a) Ta có : 51n=\(\overline{...1}\)

                47102=472.(474)25=\(\left(\overline{...9}\right).\left(\overline{...1}\right)=\overline{...9}\)

\(\Rightarrow51^n+47^{102}=\left(\overline{...1}\right)+\left(\overline{...9}\right)=\overline{...0}⋮10\)

Vậy 51n+47102\(⋮\)10.

b) Ta có : \(17^5=17.17^4=17.\left(\overline{...1}\right)=\overline{...7}\)

                \(24^4=\overline{...6}\)

                 \(13^{21}=13.\left(13^4\right)^5=13.\left(\overline{...1}\right)=\overline{...3}\)

\(\Rightarrow17^5+24^4-13^{21}=\left(\overline{...7}\right)+\left(\overline{...6}\right)-\left(\overline{...3}\right)=\overline{...0}⋮10\)

Vậy 175+244+1321\(⋮\)10

Khách vãng lai đã xóa
Đôn Văn Anh
Xem chi tiết
Monkey D Luffy
Xem chi tiết
Nguyễn Quốc Việt
17 tháng 12 2016 lúc 21:48

Ta có:

\(A=51^n+47^{102}\)

\(\Rightarrow A=\overline{...1}+47^{100}.47^2\)

\(\Rightarrow A=\overline{...1}+\left(47^4\right)^{25}.\left(\overline{...9}\right)\)

\(\Rightarrow A=\overline{...1}+\left(\overline{...1}\right)^{25}.\left(\overline{...9}\right)\)

\(\Rightarrow A=\overline{...1}+\left(\overline{...1}\right).\left(\overline{...9}\right)\)

\(\Rightarrow A=\overline{...1}+\overline{...9}\)

\(\Rightarrow A=\overline{...0}\)

\(\overline{....0}\text{⋮}10\) nên \(A\text{⋮}10\)

Vậy \(A\text{⋮}10\left(đpcm\right)\)

Học 24
Xem chi tiết
Komorebi
1 tháng 12 2017 lúc 20:36

47102 có chữ số tân cùng là 9

51n có tận cùng là 1

=> 51n + 47102 có chữ số tận cùng là 0

=>A chia hết cho 10