47102 có chữ số tân cùng là 9
51n có tận cùng là 1
=> 51n + 47102 có chữ số tận cùng là 0
=>A chia hết cho 10
47102 có chữ số tân cùng là 9
51n có tận cùng là 1
=> 51n + 47102 có chữ số tận cùng là 0
=>A chia hết cho 10
chứng minh rằng:
a) 2n + 11...1(n chữ số) chia hết cho 3.
b) 10 ^ n + 18n - 1 chia hết cho 27.
c) 10 ^ n + 72n - 1 chia hết cho 81.
Chứng minh rằng 10^10+2 chia hết cho 3 không chia hết cho 9
cho A= 1+3+32+33+..........+ 311 a. chứng minh rằng Achia hết cho 4 ;b.chứng minh rằng Achia hết 10;c.chứng minh rằng A chia hết cho 13
\(A=3+3^2+3^3+3^4+...+3^{49}+3^{50}\)
a) chứng minh rằng A chia hết cho 4
b) chứng mình rằng A chia hết cho 10
\(A=3+3^2+3^3+3^4+...+3^{49}+3^{50}\)
a) chứng minh rằng A chia hết cho 4
b) chứng mình rằng A chia hết cho 10
Câu 1
A = (x+2017).(x+2018).Chứng tỏ rằng A luôn chia hết cho2
Câu 2
Cho C=3^10+3^11+3^12+...+3^16+3^17. Chứng minh rằng C chia hết cho 40
Câu 3
D= 4^25+4^26+4^27+...=4^29+4^30. Chứng minh rằng D chia hết cho 273
Chứng minh rằng:
a) 10n-36n - 1 chia hết cho 27
b) 8n + 11...1 chia hết cho 9
n chữ số 1
chứng minh rằng :
a) 942^60 - 351^37 chia hết cho 5
b) 242^2700-76^1025 chia hết cho 10
c) 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
Cho A = 51n + 47102 (n thuộc N )Chứng minh rằng A chia hết cho 10
Cho A = 1.2.3......29.30
B = 31.32.33.......59.60
a) Chứng minh: B chia hết cho 230
b) Chứng minh: B - A chia hết cho 61