Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rhider
Xem chi tiết
Thanh Hoàng Thanh
12 tháng 1 2022 lúc 20:45

undefined

Lê Thảo Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2023 lúc 23:47

a: ΔABC cân tại A có AH là phân giác

nên H là trung điểm của BC

ΔABC cân tại A có AH là trung tuyến

nên AH vuông góc BC

b: BH=CH=12/2=6cm

AH=căn AB^2-AH^2=8cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>AD=AE và HD=HE

=>ΔHDE cân tại H

d: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

Chu Minh
Xem chi tiết
Watashi no shekai
10 tháng 7 2021 lúc 20:00

 

Áp dụng định lý Pi-ta-go vào tam giác vuông ABH vuông tại H ta có: 

    AB2= BH2 + AH2  

<=> 152= 122+ AH2

<=> AH2= 152- 122= 225- 144= 81

<=> AH= 9 (cm)

 Tương tự ta có : Áp dụng định lý Pi-ta-go vào tam giác vuông ACH vuông tại H .             

        AC2= AH2+ HC2

<=> 412= 92+ HC2

<=> HC2= 412- 92= 1681- 81= 1600

<=>HC= 40 (cm)

 

 

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 10 2019 lúc 10:22

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 3 2019 lúc 13:53

Trần Hải Việt シ)
Xem chi tiết
Chanh Xanh
13 tháng 1 2022 lúc 15:39

TK

undefined

Yein
Xem chi tiết
Edogawa Conan
13 tháng 3 2020 lúc 9:34

A B C H 7 cm 2 cm 2 cm

Ta có: AC = AH + HC = 7 + 2 = 9 (cm)

 Vì AB = AC => AB = 9 cm

Áp dụng định lí Pi - ta - go vào t/giác AHB vuông tại H, ta có:

AB2 = AH2 + BH2

=> BH2 = AB2 - AH2 = 92 - 72 = 32

Áp dụng định lí Pi - ta - go vào t/giác AHC vuông tại H, ta có:

 BC2 = BH2 + HC2 = 32 + 22 = 36

=> BC = 6 (cm)

Khách vãng lai đã xóa
NGUYỄN THỊ THÚY
Xem chi tiết
Devil
12 tháng 4 2016 lúc 20:02

yêu cầu của câu c là gì vậy

Devil
12 tháng 4 2016 lúc 20:04

a)

xét 2 tam giác vuông ABH và ACH có:

AB=AC(gt)

AH(chung)

suy ra tam giác ABH=ACH(CH-CGV)

suy ra BH=CH và BAH=CAH

Devil
12 tháng 4 2016 lúc 20:05

b)

\(BH^2=AB^2-AH^2=5^2-4^2=25-26=9\)

\(BH=\sqrt{9}=3\left(cm\right)\)

Thái Thanh Vân
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2023 lúc 14:38

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A