Cho tam giác ABC cân ở A.Kẻ AH vuông góc với BC(H thuộc BC)
Chứng minh tam giác ABC=tam giác AHC
mn giúp em với ạ em cần gấp lắm
Mong mn làm giúp mình vì mình cần gấp ạaa🙆❤️ Cho tam giác ABC vuông tại A ( AB < AC ), đường cao AH. Về phía ngoài tam giác ABC vẽ tam giác vuông ACE cân tại C. Kẻ EN vuông góc với BC ( N thuộc BC ) a. Chứng minh tam giác AHC= tam giác CNE b. Đường thẳng vuông góc với CE tại E cắt các đường thẳng AB, Ah lần lượt là I, K. Hỏi tam giác AIC là tam giác gì, vì sao c. Chứng minh AK= BC
Mong mn làm giúp mình vì mình cần gấp ạaa🙆❤️ Cho tam giác ABC vuông tại A ( AB < AC ), đường cao AH. Về phía ngoài tam giác ABC vẽ tam giác vuông ACE cân tại C. Kẻ EN vuông góc với BC ( N thuộc BC ) a. Chứng minh tam giác AHC= tam giác CNE b. Đường thẳng vuông góc với CE tại E cắt các đường thẳng AB, Ah lần lượt là I, K. Hỏi tam giác AIC là tam giác gì, vì sao c. Chứng minh AK= BC
Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC. a) Chứng minh tam giác AHB=tam giác AHC b) Vẽ HM vuông góc AB, HN vuông góc AC, chứng minh tam giác AMN cân c) Chứng minh MN song song với BC d) Chứng minh AH ^2 + BM^2=AN^2 +BH^2
Vẽ hộ em hình nwuax ạ
a, Xét tam giác AHB và tam giác AHC có
AH _ chung
AB = AC
Vậy tam giác AHB~ tam giác AHC (ch-cgv)
Ta có tam giác ABC cân tại A, có AH là đường cao
đồng thười là đường pg
b, Xét tam giác AMH và tam giác NAH có
HA _ chung
^MAH = ^NAH
Vậy tam giác AMH = tam giác NAH (ch-gn)
=> AM = AN ( 2 cạnh tương ứng )
c, Ta có AM/AB = AN/AC => MN // BC
d, Ta có \(AH^2+BM^2=AN^2+BH^2\)
Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)
Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)
Lại có AM = AN (cmt)
\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M)
Vậy ta có đpcm
cho tam giác ABC cân tại a kẻ AH vuông góc với BC (H thuộc bc) Trên nửa mặt phẳng nhờ BC không chứa điểm A, vẽ Bx vuông góc với BA, Cy vuông góc với CA gọi D là giao điểm của Bx và Cy chứng minh tam giác:
a) AHB=AHC
b)ABD=ACD
giúp em với ạ plsssssssss
CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn
Cho tam giác ABC cân ở A.Kẻ AH vuông góc với BC(H thuộc BC)
Chứng minh tam giác AHB=tam giác AHC
mn giúp em với ạ em cần gấp lắm(vẽ luôn hộ em cái hình hihi)
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
cho tam giác ABC cân tại A kẻ AH vuông góc với BC(H thuộc BC)
a, Chứng minh: tam giác AHC= tam giác AHC
b, Kẻ HD vuông góc với AB(D thuộc AB), HE vuông góc với AC(E thuộc AC): Chứng minh tam giác HDE Cân
c,Nếu cho góc A=120 độ thì tam giác HDE trở thành tam giác gì? Vì sao?
cho tam giác ABC cân tại a ( góc a= 90 độ ) dựng AH vuông góc với BC tại H ( H thuộc BC)
a chứng minh tam giác ABC = tam giác AHC và HB=HC
b với AB =30cm bc =36cm tính độ dài AH
c kẽ đường trung tuyến BM của tam giác ABC cắt AH tại G tính độ dài AG và BM
gấp ạ giúp mình câu c
a: XétΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: BH=CH
b: BH=CH=BC/2=18(cm)
nên AH=24(cm)
cho tam giác abc cân tại a.kẻ ah vuông góc với bc tại h
a)chứng minh rằng tam giác AHB=tam giác AHC
b)chứng minh HB=HC và BHA =CAH
c)C/m tam giác HKB =tam giác HIC
d)c/m KI//BC
Cho tam giác ABC cân ở A.Kẻ AH vuông góc với BC(H thuộc BC) . Chứng minh rằng:
a) HB=HC
b) AH là tia phân giác của góc BAC
a) Xét \(\Delta\)ABH và \(\Delta\)ACH có :
AB = AC(vì \(\Delta\)ABC cân ở A)
\(\widehat{B}=\widehat{C}\)( \(\Delta\)ABC cân ở A)
=> \(\Delta\)ABH = \(\Delta\)ACH(cạnh huyền - góc nhọn)
b) Có \(\Delta\)ABH = \(\Delta\)ACH(cmt)
=> \(\widehat{BAH}=\widehat{CAH}\)
=> AH là tia phân giác của \(\widehat{BAC}\)
Hình vẽ :