Tìm m để Pt sau có 2 nghiệm dương phân biệt
\(2x^2-2\left(m-1\right)x+m+3=0\)
Tìm m để pt sau có 2 nghiệm phân biệt
\(2x^2-\left(4m+3\right)x+2m^2-1=0\)
2x^2 -(4m+3)x+2m^2-1=0
a= 2
b = -(4m+3)
c= 2m^2-1
Ta có: ∆=b^2-4ac
= 〖(4m+3)〗^2-4.2.(2m^2-1)
= 16m^2+24m+9-16m^2+8
= 24m +17
Để phương trình có 2 nghiệm phân biệt
=> ∆> 0 =>24m +17>0=> 24m > - 17=>m> (-17)/24Vậy để pt có 2 nghiệm phân biệt thì m > (-17)/24
https://www.youtube.com/watch?v=toNMfaR7_Ns
https://www.youtube.com/watch?v=toNMfaR7_Ns
1,Tìm m để pt có \(\sqrt{2x^2+mx}=3-x\)
a, 1 nghiệm
b, 2 nghiệm phân biệt
2,Tìm m để pt có 2 nghiệm phân biệt \(\sqrt{x+2}+\sqrt{6-x}-\sqrt{\left(x+2\right)\left(6-x\right)}=m\)
Tìm m để pt:
a. \(2x^2+\left(m-3\right)x=0\) có nghiệm nguyên dương <3
b. \(\left(m-1\right)x^2-2 \left(m-1\right)x+m=0\)có đúng 1 nghiệm
c. \(\left(m-3\right)x^2-2mx+m-6=0\)có 2 nghiệm phân biệt
b) Ta có : \(\Delta'=m^2-2m+1-m^2+m\)
\(=-m+1\)
để phương trình có đúng một nghiệm, thì : \(\Delta'=0\)\(\Leftrightarrow-m+1=0\)\(\Rightarrow m=1\)
c) Ta có: \(\Delta'=m^2-\left(m-3\right)\left(m-6\right)\)
\(=m^2-m^2+6m+3m-18\)
\(=9m-18\)
\(=9\left(m-2\right)\)
Để phương trình có 2 nghiệm phân biệt thì : \(\Delta'>0\)\(\Leftrightarrow9\left(m-2\right)>0\)
\(\Leftrightarrow m-2>0\)\(\Leftrightarrow m>2\)
c, phương trình c có 2 nghiệm \(\leftrightarrow\leftrightarrow\)\(\Delta\)= -36m + 72>0
<=> m <2
b,phương trình c có 1 nghiệm phân biệt khi và chỉ khi: \(\Delta\)= -4m+4=0
<=> m= 1
Cho pt: \(m^2-\left(2x+1\right)x+m+3=0\)
a). Tìm m để pt trên có 2 nghiệm phân biệt ≠ 0
b). giả xử \(x_1;x_2\) là 2 nghiệm của pt trên. Tìm m để:
\(\dfrac{mx_1^2+\left(2m+1\right)x_2+m+3}{m}+\dfrac{m}{mx_2^2+\left(2m+1\right)x_1+m+3}=2\)
cho PT : \(^{x^2-2\left(m+1\right)x+m^2-4m+5=0}\)
tìm m để PT vô nghiệm
tìm m để PT có nghiệm kép
tìm m để PT có 2 nghiệm phân biệt đều dương
Cho pt: \(x^3+\left(m+1\right)x^2+2\left(m-2\right)x-3m+2=0\)
a) Tìm m để pt có 3 nghiệm phân biệt
b) Tìm m để pt có 3 nghiệm phân biệt <2
Tìm m để pt có nghiệm phân biệt trái dấu
a) \(2x^2-\left(m^2-m+1\right)x+2m^2-3m-5=0\)
b) \(\left(m^2-3m+2\right)x^2-2m^2x-5=0\)
c) \(x^2-2\left(m-1\right)+m^2-2m=0\)( nghiệm âm có giá trị tuyệt đối lớn hơn)
a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)
\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)
\(\Leftrightarrow-1< m< \dfrac{5}{2}\)
b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Phương trình đã cho có nghiệm duy nhất
TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)
Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)
\(\Leftrightarrow m^2-3m+2>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)
Vậy \(m>2\) hoặc \(m< 1\)
c, Phương trình đã cho có hai nghiệm trái dấu \(x_1,x_2\) khi \(m^2-2m< 0\Leftrightarrow0< m< 2\)
Theo định lí Viet: \(x_1+x_2=2\left(m-1\right)\)
Yêu cầu bài toán thỏa mãn khi \(x_1+x_2< 0\Leftrightarrow2\left(m-1\right)< 0\Leftrightarrow m< 1\)
Vậy \(0< m< 1\)
`x^2 +2x+m-1=0`
Tìm m để pt có 2 nghiệm phân biệt thỏa mãn:
1. \(x^3_1+x_2^3-6x_1x_2=4\left(m-m^2\right)\)
2. \(x^2_1+2x_2+2x_1x_2+20=0\)
1: \(\Delta=2^2-4\cdot1\left(m-1\right)\)
\(=4-4m+4=-4m+8\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
=>-4m+8>0
=>-4m>-8
=>m<2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\\x_1\cdot x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
\(x_1^3+x_2^3-6x_1x_2=4\left(m-m^2\right)\)
=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-6x_1x_2=4\left(m-m^2\right)\)
=>\(\left(-2\right)^3-3\cdot\left(-2\right)\left(m-1\right)-6\left(m-1\right)=4\left(m-m^2\right)\)
=>\(-8+6\left(m-1\right)-6\left(m-1\right)=4\left(m-m^2\right)\)
=>\(4\left(m^2-m\right)=8\)
=>\(m^2-m=2\)
=>\(m^2-m-2=0\)
=>(m-2)(m+1)=0
=>\(\left[{}\begin{matrix}m-2=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)
2: \(x_1^2+2x_2+2x_1x_2+20=0\)
=>\(x_1^2-x_2\left(x_1+x_2\right)+2x_1x_2+20=0\)
=>\(x_1^2-x_2^2+x_1x_2+20=0\)
=>\(\left(x_1-x_2\right)\left(x_1+x_2\right)+m-1+20=0\)
=>\(-2\left(x_1-x_2\right)=-m-19\)
=>2(x1-x2)=m+19
=>\(x_1-x_2=\dfrac{1}{2}\left(m+19\right)\)
=>\(\left(x_1-x_2\right)^2=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(\left(-2\right)^2-4\left(m-1\right)=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(4-4m+4=\dfrac{1}{4}\left(m+19\right)^2\)
=>\(\left(m+19\right)^2=4\left(-4m+8\right)=-16m+32\)
=>\(m^2+38m+361+16m-32=0\)
=>\(m^2+54m+329=0\)
=>\(\left[{}\begin{matrix}m=-7\left(nhận\right)\\m=-47\left(nhận\right)\end{matrix}\right.\)
Đặt x2 + 2x + 4 = t . Điều kiện : t ≥ 3
Phương trình đã cho trở thành t2 - 2mt - 1 = 0 (1)
(1) là phương trình hoành độ giao điểm của đồ thị hàm số y = t2 - 2mt - 1 với trục Ox (tức đường thẳng y = 0). Yêu cầu bài toán thỏa mãn khi (1) có 2 nghiệm phân biệt t thỏa mãn t ≥ 3
Ta có bảng biến thiên của hàm số y = t2 - 2mt - 1
Nếu m > 3 thì yêu cầu bài toán thỏa mãn khi
8 - 6m ≥ 0 ⇔ m ≤ \(\dfrac{4}{3}\) (không thỏa mãn m > 3)
Nếu m < 3, yêu cầu bài toán thỏa mãn khi
8 - 6t ≤ 0 ⇔ m ≥ \(\dfrac{4}{3}\) Vậy m ∈ \(\)[\(\dfrac{4}{3};3\))
Nếu m = 3 thì phương trình trở thành
t2 - 6t - 1 = 0 có 2 nghiệm thỏa mãn \(\left\{{}\begin{matrix}t_1+t_2=6\\t_1.t_2=-1\end{matrix}\right.\)
tức phương trình có 2 nghiệm trái dấu (không thỏa mãn điều kiện 2 nghiệm t ≥ 3) nên m = 3 không thỏa mãn yêu cầu bài toán
Vậy tập hợp các giá trị m thỏa mãn yêu cầu bài toán là M = \(\left\{m\in R;\dfrac{4}{3}\le m< 3\right\}\)
cho pt: \(x^2-2\left(m+1\right)x+m-4=0\)
a) Tìm m để pt có 2 nghiệm đối nhau
b) CMR: Pt luôn có 2 nghiệm phân biệt với mọi m
c) CMR biểu thức: \(x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)Không phụ thuộc vào m
e) xác định m để pt có 2 nghiệm phân biệt dương ?