Giải BPT\(\sqrt{-x^2+4x-3}>x-2\)
giải bpt : \(\sqrt{-x^2-4x+21}< x+3\)
ĐK: \(-7\le x\le3\)
\(\sqrt{-x^2-4x+21}< x+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3>0\\-x^2-4x+21< x^2+6x+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-3\\2x^2+10x-12>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-3\\\left(x+6\right)\left(x-1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow x>1\)
\(\Rightarrow x\in(1;3]\)
giải bpt
\(\sqrt{x+2}+\sqrt{3-x}\le x^3+x^2-4x-1\)
ĐKXĐ: \(-2\le x\le3\)
\(\Leftrightarrow3x^3+3x^2-12x-12+x+4-3\sqrt{x+2}+5-x-3\sqrt{3-x}\ge0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left(3x+6\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}\ge0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left[3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{3-x}}\right]\ge0\)
\(\Leftrightarrow x^2-x-2\ge0\)
\(\Rightarrow\left[{}\begin{matrix}-2\le x\le-1\\2\le x\le3\end{matrix}\right.\)
giải bpt sau : \(\sqrt{x^2-3x+20}+\sqrt{x^2-4x+3}\ge\sqrt{x^2-5x+4}\)
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
giải bpt
1.\(\sqrt{5x+1}-\sqrt{4x-1}\le3\sqrt{x}\)
2.\(\frac{\sqrt{2\left(x^2-16\right)}}{\sqrt{x-3}}+\sqrt{x-3}>\frac{7-x}{\sqrt{x-}}\)
ĐKXĐ: \(x\ge\frac{1}{4}\)
\(\sqrt{5x+1}\le3\sqrt{x}+\sqrt{4x-1}\)
\(\Leftrightarrow5x+1\le9x+4x-1+6\sqrt{4x^2-x}\)
\(\Leftrightarrow3\sqrt{4x^2-x}\ge1-4x\)
Do \(x\ge1\Rightarrow\left\{{}\begin{matrix}1-4x\le0\\\sqrt{4x^2-x}\ge0\end{matrix}\right.\) \(\Rightarrow\) BPT luôn đúng
Vậy nghiệm của BPT là \(x\ge\frac{1}{4}\)
b/ ĐKXĐ: \(x\ge4\)
\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}+x-3>7-x\)
\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}>10-2x\)
- Với \(x>5\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\le5\) bình phương 2 vế:
\(2\left(x^2-16\right)>4\left(x-5\right)^2\)
\(\Leftrightarrow x^2-20x+66< 0\)
\(\Rightarrow10-\sqrt{34}< x< 10+\sqrt{34}\)
Vậy nghiệm của BPT là \(x>10-\sqrt{34}\)
Giải bpt: \(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}\le0\)
Giải bpt:
a,\(\frac{\sqrt{x^2-x+4}-2x-3}{x-2}>3\)
b, \(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}\le\sqrt{x\left(4x+1\right)}\)
giải BPT sau
\(4x^2-\sqrt{2x^3+2x^2+x+1}>6x+4\)
Nhóm BPT : 2(2x^2+1)-√(2x^2+1)(x+1) -6(x+1)>0
Đk dưới căn có nghĩa x>=-1.
Với x=-1 là một nghiệm--> nhận x=-1
Với x>-1, chia 2 vế cho x+1>0, Bđt ko đổi chiều.
2.(2x^2+1)/(x+1) - √(2x^2+1)/(x+1) - 6 >0
Đặt t=√(2x^2+1)/(x+1) , t>0, ta được
2t^2-t-6>0 --> t>2 ....bài toán dễ dàng rồi!
giải các BPT
1. \(\frac{1-\sqrt{1-4x^2}}{x}< 3\)
2.\(\sqrt[3]{2-x}+\sqrt{x-1}>1\)
3.\(x+\frac{x}{\sqrt{x^2-1}}>\frac{35}{12}\)