cho đa thức f(x) thỏa mãn
x.f(x+1)=(\(^{x^2}\)+2).f(x+3)
cm đa thức có ít nhất 2 nghiệm
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
cho đa thức f(x) thỏa mãn: x.f(x+1)=(x+2).f(x)
CMR: đa thức f(x) có ít nhất 2 nghiệm phân biệt
-Cho x=0=>0.f(1)=2.f(0)
=> 0 =2.f(0)
=> f(0)=0
Vậy x=0 là nghiệm của f(x) (1)
-Cho x=-2=> -2.f(-1)=0.f(-2)
=> -2.f(-1)=0
=> f(-1)=0
Vậy x=-1 là nghiệm của f(x) (2)
Từ (1) và (2)=> f(x) có ít nhất 2 nghiệm phân biệt (đpcm)
Ghi chú: Ở đây mình xét 2 giá trị của x sao cho một vế bằng 0 rồi đi tìm nghiệm của f(x) chứ không phải là xét giá trị của x để suy ra nó là nghiêm của f(x) bạn nhé!!!
cho đa thức f(x) thỏa mãn điều kiện: x.f(x+1)=(x+2).f(x)
cmr:đa thức f(x) có ít nhất 2 nghiệm
Với x=0, ta có x.f(x+1)=(x+2).f(0)=0
=>(0+2).f(0)=0
2.f(0)=0
=>f(0)=0
Với x=-2, ta có
-2.f(-2+1)=(-2+2).f(-2)
=>-2.f(-1)=0.f(-2)
=>-2.f(-1)=0
=>f(-1)=0
Vậy đa thức f(x) có ít nhất 2 nghiệm
Em mới học lớp 5 thôi ạ cho nên em chịu vậy nên em chỉ biết chúc chị học giỏi thôi
em mới lên lớp 5 năm nay lên lớp 6 nên em cũng chẳn biết mấy cái này em chẳng biết nói gì chỉ biết chúc chị xinh đẹp học giỏi thôi ạ
cho đa thức f(x) thỏa mãn điều kiện :
x.f(x-2)=(x-4).f(x)
cmr đa thức f(x) có ít nhất 2 nghiệm
Với x=0 thì x.f(x-2)=(0-4).f(x)=0
=> f(0)=0
Với x=4 thì x-4=0 => 4.f(2)=0.f(4)=0
=>f(2)=0
Vậy đa thức f(x) có ít nhất 2 nghiệm
à bài này....mk quên cách làm rồi,hihi sorry bạn nha,tiếc quá mk ko giúp được bạn
con hằng có trả lời đâu!Ai tk cho nó z?Tôi muốn có 1 cái tên!!!!
cho đa thức f(x) xác định với mọi x thỏa mãn
x.f(x+2) =( x\(^2\)-9).f(x)
1) tính f(5)
2) chứngminh rằng f(x) có ít nhất 3 nghiệm
1) Xét với x=3x=3 thì : 3.f(5)=(32−9).f(3)3.f(5)=(32−9).f(3)
⇒3.f(5)=0⇒f(5)=0⇒3.f(5)=0⇒f(5)=0 (*)
2) Xét với x=0⇔0=−9.f(0)⇒f(0)=0x=0⇔0=−9.f(0)⇒f(0)=0
nên x=0x=0 là 1 nghiệm của đa thức f(x)f(x) (1)
Xét với x=−3⇔3.f(−1)=0⇒f(−1)=0x=−3⇔3.f(−1)=0⇒f(−1)=0
nên x=−1x=−1 là 1 nghiệm của đa thức f(x)f(x) (2)
Từ (*)(1)(2) ⇒⇒ f(x)f(x) có ít nhất 3 nghiệm.
1) Xét với x=3x=3 thì : 3.f(5)=(32−9).f(3)3.f(5)=(32−9).f(3)
⇒3.f(5)=0⇒f(5)=0⇒3.f(5)=0⇒f(5)=0 (*)
2) Xét với x=0⇔0=−9.f(0)⇒f(0)=0x=0⇔0=−9.f(0)⇒f(0)=0
nên x=0x=0 là 1 nghiệm của đa thức f(x)f(x) (1)
Xét với x=−3⇔3.f(−1)=0⇒f(−1)=0x=−3⇔3.f(−1)=0⇒f(−1)=0
nên x=−1x=−1 là 1 nghiệm của đa thức f(x)f(x) (2)
Từ (*)(1)(2) ⇒⇒ f(x)f(x) có ít nhất 3 nghiệm.
cho đa thức f(x) xác định với mọi x thỏa mãn
x.f(x+2) =( x2
-9).f(x)
1) tính f(5)
2) chứngminh rằng f(x) có ít nhất 3 nghiệm
\(a,f\left(5\right)\Rightarrow x=3\\ 3f\left(5\right)=0f\left(3\right)\Rightarrow f\left(5\right)=0\\ b,x=0\Rightarrow0f\left(2\right)=-9f\left(0\right)\Rightarrow f\left(0\right)=0\)
=> x = 0 là nghiệm
\(x=-3\Rightarrow-3f\left(-1\right)=\left(9-9\right)f\left(-3\right)=0f\left(-3\right)\\ \Rightarrow f\left(-1\right)=0\)
=> x = -1 là nghiệm
Theo ý a) ta có \(x=5\)
\(\Rightarrow f\left(x\right)\) có 3 nghiệm \(=\left\{0;-1;5\right\}\)
Cho đa thức f(x) thỏa mãn điều kiện:
x.f(x-2)=(x-4).f(x)
Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
cho đa thức f(x) thoả mãn (x mũ 2 -9 )f(x)=x.f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
Cho đa thức f(x) thỏa mãn điều kiện:
x.f(x + 1) = (x+2).f(x)
Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
tham khảo nha
https://olm.vn/hoi-dap/detail/77562326250.html
Câu hỏi của Đoàn Ngọc Minh Anh - Toán lớp 7 - Học toán với OnlineMath
Xét x = 0
=> 0. f(1) = 2.f(0)
=> 0 = 2. f(0)
=> f(0) = 0
=> x = 0 là nghiệm của đa thức f(x) ( 1 )
Xét x = - 2
=> - 2. f(-1) = 0.f(-2)
=> - 2. f(-1) = 0
=> f(-1) = 0
=> x = -1 là nghiệm của đa thức f(x) ( 2 )
Từ ( 1 ) và ( 2 ) => Đa thức f(x) có ít nhất 2 nghiệm
Study well ! >_<