\(A=\frac{sin2x+c\text{os}3x+sin6x+c\text{os}7x}{sin3x-s\text{inx}}\)
\(\int\frac{tan^3x}{c\text{os}2x}dx\)
2) \(\int\frac{xe^x\left(4+4\left(s\text{inx}+c\text{os}x\right)+sin2x\right)}{\left(1+c\text{os}x\right)^2}\)
1)
\(\int\frac{tan^3x}{cos2x}dx=\int\frac{sin^3x}{cos^3x\cdot\left(2cos^2x-1\right)}dx=\int\frac{1-cos^2x}{cos^3x\left(2cos^2x-1\right)}\cdot sinx\cdot dx\\ =\int\frac{1-cos^2x}{cos^3x\left(2cos^2x-1\right)}d\left(cosx\right)=...\)
\(\frac{1+c\text{os}x-s\text{inx}}{1-c\text{os}x-s\text{inx}}=-cot\frac{x}{2}\)
\(\frac{1+cosx-sinx}{1-cosx-sinx}=\frac{1+2cos^2\frac{x}{2}-1-2sin\frac{x}{2}.cos\frac{x}{2}}{1-1+2sin^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}=\frac{2cos^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}{2sin^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}\)
\(=\frac{-2cos\frac{x}{2}\left(sin\frac{x}{2}-cos\frac{x}{2}\right)}{2sin\frac{x}{2}\left(sin\frac{x}{2}-cos\frac{x}{2}\right)}=\frac{-cos\frac{x}{2}}{sin\frac{x}{2}}=-cot\frac{x}{2}\)
\(\int_0^{\frac{\Pi}{2}}c\text{os}^2x\left(1-sin^3x\right)dx\)
2) \(\int_0^{\frac{\Pi}{4}}\frac{sin\left(x-\frac{\Pi}{4}\right)}{sin2x+2\left(1+s\text{inx}+c\text{ox}\right)}dx\)
hộ mk vs nha
1)
\(I=\int\left(cos^2x-cos^2x\cdot sin^3x\right)dx\\ =\int cos^2x\cdot dx-\int cos^2x\cdot sin^3x\cdot dx\\ =\frac{1}{2}\int\left(cos2x+1\right)dx+\int cos^2x\left(1-cos^2x\right)d\left(cosx\right)\\ =\frac{1}{4}sin2x+\frac{1}{2}+\frac{cos^3x}{3}-\frac{cos^5x}{5}+C\)
....
2) Xét riêng mẫu số:
\(sin2x+2\left(1+sinx+cosx\right)\\ =\left(sin2x+1\right)+2\left(sinx+cosx\right)+1\\ =\left(sinx+cosx\right)^2+2\left(sinx+cosx\right)+1\\ =\left(sinx+cosx+1\right)^2\\ =\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]^2\)
Khi đó:
\(I_2=\int\frac{sin\left(x-\frac{\pi}{4}\right)}{\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]^2}dx\\ =-\frac{1}{\sqrt{2}}\int\frac{d\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]}{\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]^2}\\ =\frac{1}{\sqrt{2}}\cdot\frac{1}{\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1}+C=\frac{1}{2cos\left(x-\frac{\pi}{4}\right)+1}\)
...
Giúp mình với ạ. Giải pt:
1) \(sin^2x\left(x+\frac{\pi}{4}\right)=\sqrt{2}s\text{inx}\)
2) \(3\sqrt{2}c\text{os}x-s\text{inx}=c\text{os}3x+3\sqrt{2}sinxsin2x\:\)
1)\(\int\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}dx\)
2)\(\int\frac{dx}{\left(e^x+1\right)\left(x^2+1\right)}\)
3)\(\int\frac{1+2x\sqrt{1-x^2}+2x^2}{1+x+\sqrt{1+x^2}}\)dx
4)\(\int\frac{sin^6x+c\text{os}^6x}{1+6^x}dx\)
5)\(\int_0^{\frac{\pi}{2}}\frac{\sqrt{c\text{os}x}}{\sqrt{s\text{inx}}+\sqrt{c\text{os}x}}dx\)
6)\(\int\frac{x^4}{2^x+1}dx\)
7)\(\int_0^{\frac{\pi^2}{4}}sin\sqrt{x}dx\)
8)\(\int\sqrt[6]{1-c\text{os}^3x}.s\text{inx}.c\text{os}^5xdx\)
9)\(\int\sqrt{\frac{1}{4x}+\frac{\sqrt{x}+e^x}{\sqrt{x}.e^x}}dx\)
10)\(\int\frac{c\text{os}x+s\text{inx}}{\left(e^xs\text{inx}+1\right)s\text{inx}}dx\)
tìm tập xác định của mỗi hàm số sau:
a. y=\(\sqrt{3-s\text{inx}}\)
b. y=\(\frac{1-c\text{os}x}{s\text{inx}}\)
c. y=\(\sqrt{\frac{1-s\text{inx}}{1+c\text{os}x}}\)
d. y=tan (2x \(+\)\(\frac{\pi}{3}\) )
giải pt:
\(3cosx\left(1-c\text{os}2x\right)+2sin2x+s\text{inx}+c\text{os}2x=0\)
chứng minh rằng:
a)\(\frac{c\text{os}a.cot\text{a}-sin\text{a}.t\text{ana}}{\frac{1}{sin\text{a}}-\frac{1}{c\text{os}a}}=1+sin\text{a}.c\text{os}a\)
b)\(\frac{c\text{os}a+sin\text{a}-1}{c\text{os}a-sin\text{a}+1}=\frac{sin\text{a}}{1+c\text{os}a}\)
c)\(\frac{sin\text{a}}{1+c\text{os}a}+\frac{1+c\text{os}a}{sin\text{a}}=\frac{2}{sin\text{a}}\)
1) \(c\text{os}x+c\text{os}2x+c\text{os}3x=0\)
2) \(c\text{os}3x+c\text{os}4x+c\text{os}5x=0\)
3) \(c\text{os^2}x+c\text{os^2}2x+c\text{os^2}3x=0\)
4) \(c\text{os^2}2x+c\text{os^2}3x+c\text{os^2}4x=0\)
1.
\(cosx+cos3x+cos2x=0\)
\(\Leftrightarrow2cos2x.cosx+cos2x=0\)
\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
2.
\(cos3x+cos5x+cos4x=0\)
\(\Leftrightarrow2cos4x.cosx+cos4x=0\)
\(\Leftrightarrow cos4x\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
3.
Ta có: \(\left\{{}\begin{matrix}cos^2x\ge0\\cos^22x\ge0\\cos^23x\ge0\end{matrix}\right.\) với mọi x
\(\Rightarrow cos^2x+cos^22x+cos^23x\ge0\) với mọi x
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}cosx=0\\cos2x=0\\cos3x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx=0\\2cos^2x-1=0\\cos3x=0\end{matrix}\right.\)
Pt vô nghiệm (do nghiệm của pt thứ nhất ko thể là nghiệm của pt thứ 2)