Cho B= 1 + 1/2 + 1/3 + ... + 1/64. Hãy chứng tỏ rằng B/3 không phải là số nguyên.
Bài 3: Cho B = \(\dfrac{1}{3}\) + \(\left(\dfrac{1}{3}\right)^2\) + \(\left(\dfrac{1}{3}\right)^3\) + \(\left(\dfrac{1}{3}\right)^4\) + ... + \(\left(\dfrac{1}{3}\right)^{100}\)
Chứng tỏ rằng : B không phải là một số nguyên
mọi người ơi giúp mik với , ai làm đc mik tick cho
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
\(3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3B-B=1-\dfrac{1}{3^{100}}\)
\(\Rightarrow2B=1-\dfrac{1}{3^{100}}\)
\(0< \dfrac{1}{3^{100}}< 1\Rightarrow0< 1-\dfrac{1}{3^{100}}< 1\)
\(\Rightarrow0< 2B< 1\Rightarrow0< B< \dfrac{1}{2}\Rightarrow\) B không phải số nguyên
Giải giúp mình mình sẽ tick 5 cái cho !!!!!
a) Tìm a,b để số 3a12b chia hết cho 15
b) Chứng tỏ rằng tổng S=1/2+1/3+1/4+...+1/16 không phải là một số nguyên
Giải giúp mình mình sẽ tick 5 cái cho !!!!!
a) Tìm a,b để số 3a12b chia hết cho 15
b) Chứng tỏ rằng tổng S=1/2+1/3+1/4+...+1/16 không phải là một số nguyên
a, để 3a12b chia hết cho 15
=> 3a12b chia hết cho 3 và 5
=> b có thê bằng 0 hoặc 5
*với b=0 => 3a12b=3a120, để 3a120 chia hết cho 3 => 3+a+1+2+0 chia hết cho 3 hay 6+a chia hết cho 3
vì a là chữ số nên a= 3; 6; 9
ta có kết quả: 36120, 33120, 39120
* với b=5=> 3a12b= 3a125
để 3a125 chia hết cho 3 => 3+a+1+2+5 chia hết cho 3 hay 11+a chia hết cho a
vì a là chữ số => a= 1;4;7
ta có kết quả: 31125; 34125; 37125
a) để 3a12b chia hết cho 15 thì số đó phải chia hết cho 3 và 5. Ta có:
Dấu hiệu chia hết cho 5 là số có đuôi 5 hoặc 0. Vậy b = 5 hoặc 0.
Dấu hiệu chia hết cho 3 là tổng các số trong 1 số chia hết cho 3 thì chia hết cho 3.
Vậy, với b = 5. Ta có : 3a125 = 3+a+1+2+5 = 11+a => a = 1 hoặc 4 hay 7
( nếu b = 5 )
Với b = 0 . Ta có : 3a120 = 3+a+1+2+0 = 6+a => a = 0 hoặc 3 hay 6 và 9
( nếu b = 0)
Hãy chứng tỏ rằng S=1/2+1/3+1/4+...+1/16 không phải là số tự nhiên
Bài 3
1) Cho p là số nguyên tố không nhỏ hơn 5 và 2p+1 cũng là số nguyên tố. Hỏi 4p+1 là số nguyên tố hay hợp số?
2) Cho 3 số chính phương a; b; c. Chứng tỏ rằng (a-b) (b-c) (c-a)
Cho a,b là 2 số nguyên không là bội của 3 nhưng có cùng số dư khi chia cho 3 . Chứng tỏ rằng (ab-1):3
cho đẳng thức :49/1+48/2+47/3+...+2/48+1/49=50A
hãy chứng tỏ rằng A không phải là số tự nhiên
Cho đẳng thức: 40/1+48_2+47/3+...+2/48+1/49=50A.
Hãy chứng tỏ rằng A không phải là số tự nhiên
chứng tỏ rằng [7+1].[7+2] chia hết cho 3
chứng tỏ rằng [3^100+19^990] chia hết cho 2
abcabc có ít nhất 3 ước số nguyên tố
M=1+3^1+3^2+.......+3^30
Tìm chữ số tận cùng của M,từ đó suy ra M có phải là số chính phương không
cmr [7+1].[7+2] chia hết cho 3
=8x9
=72
72 chia hết cho 3
ĐCPCM
Ta có chú ý chẵn cộng chẵn bằng chẵn
lẻ cộng chẵn bằng lẻ
lẻ cộng lẻ là chẵn
mà ta thấy \(3^{100}\) và\(19^{990}\)là lẻ mà lẻ cộng lẻ bằng chẵn
=> mà số chẵn chia hết cho 2
ĐCPCM
3S=3+3^2+3^3+...+3^{31}
3S-S=3^{31}-1
2S=3^{4.7+3}-1
2S=81^7.27-1
2S=\overline{......1}.27-1
2S=\overline{......7}-1=\overline{......6}
S=\overline{........3}
Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương
1) CMR: (7+1)(7+2)\(⋮\)3
\(\left(7+1\right)\left(7+2\right)=8\cdot9⋮3\left(đpcm\right)\)
2) CMR: \(3^{100}+19^{990}⋮2\)
ta có: \(3^{100}\)có chữ số tận cùng là số lẻ
\(19^{990}\)có chữ số tận cùng là số lẻ
mà lẻ + lẻ = chẵn => đpcm
3) abcabc có ít nhất 3 ước số nguyên tố
ta có: abcabc = abc x 1001 = abc x 11 x 7 x 13
Vậy...
4) Cho \(M=1+3^1+3^2+...+3^{30}\)
Tìm chữ số tận cùng của M. Từ đó suy ra M có phải số chính phương không?
ta có: \(M=1+3^1+3^2+...+3^{30}\)(1)
\(\Rightarrow3M=3+3^2+3^3+...+3^{31}\)(2)
(2) - (1) \(\Leftrightarrow3M-M=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)
\(\Leftrightarrow2M=3^{31}-1\)
ta có: \(3^{31}=3^{28}\cdot3^3=\left(3^4\right)^7\cdot27=\left(...1\right).27=...7\Rightarrow2M=...7-1=...6\)
\(\Rightarrow\orbr{\begin{cases}M=...3\\M=...8\end{cases}}\)mà số chính phương không có tận cùng là 3, 8
=>đpcm
Học tốt nhé ^3^