29. Cho tan x=3. Tính A = 2sin^2.x - 5sinx.cosx +cos^2.x / 2sin^2.x + sinx.cosx + cos^2.x
Chứng minh các đẳng thức sau :
a) (sin x + cos x)2 = 1 + 2sin x.cos x
b) sin4 x + cos4 x = 1 - 2sin2 x.cos2 x
c) tan2 x - sin2 x = tan2 x.sin2 x
d) sin6 x + cos6 x = 1 - 3sin2 x.cos2 x
e) sin x.cos x (1 + tan x)(1 + cot x) = 1 + 2sin x .cos x
a)
\((\sin x+\cos x)^2=\sin ^2x+2\sin x\cos x+\cos ^2x\)
\(=(\sin ^2x+\cos ^2x)+2\sin x\cos x=1+2\sin x\cos x\)
b)
\(\sin ^4x+\cos ^4x=\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x-2\sin ^2\cos ^2x\)
\(=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x\)
\(=1-2\sin ^2x\cos ^2x\)
c)
\(\tan ^2x-\sin ^2x=(\frac{\sin x}{\cos x})^2-\sin ^2x\)
\(=\sin ^2x\left(\frac{1}{\cos ^2x}-1\right)=\sin ^2x. \frac{1-\cos ^2x}{\cos ^2x}=\sin ^2x.\frac{\sin ^2x}{\cos ^2x}\)
\(=\sin ^2x\left(\frac{\sin x}{\cos x}\right)^2=\sin ^2x\tan ^2x\)
d)
\(\sin ^6x+\cos ^6x=(\sin ^2x)^3+(\cos ^2x)^3\)
\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)\)
\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x\)
\(=(\sin ^4x+\cos ^4x)-\sin ^2x\cos ^2x=1-2\sin ^2x\cos ^2x-\sin ^2x\cos ^2x\)
\(=1-3\sin ^2x\cos ^2x\) (theo kq phần b)
e)
\(\sin x\cos x(1+\tan x)(1+\cot x)=\sin x\cos x(1+\frac{\sin x}{\cos x})(1+\frac{\cos x}{\sin x})\)
\(=\sin x\cos x.\frac{\cos x+\sin x}{\cos x}.\frac{\sin x+\cos x}{\sin x}\)
\(=(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x\)
\(=1+2\sin x\cos x\)
-------------
P/s: Nói chung cứ bám vào công thức \(\sin ^2x+\cos ^2x=1\)
Cho tan x = 5 . Tính D = 2sin2x - cos2x / 1+4sin2x
\(D=\frac{2sin^2x-cos^2x}{5sin^2x+cos^2x}=\frac{\frac{2sin^2x}{cos^2x}-1}{\frac{5sin^2x}{cos^2x}+1}=\frac{2tan^2x-1}{5tan^2x+1}=\frac{2.5^2-1}{5.5^2+1}=\frac{7}{18}\)
Giải phương trình:
`cot x-1=[cos 2x]/[1+tan x]+sin^2 x-1/2sin 2x`
B1: tính giá trị của biểu thức biết:
a, sinα= -1/2; π<α<3π/2. Tính A= 4sin^2 α - 2 cos α + 3cot α
b, Cho tan α= 2. Tính B= cos^2 x + sin2x + 1/ 2sin^2 x + cos^2 +2
a/ \(\pi< a< \frac{3\pi}{2}\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{3}}{2}\)
\(\Rightarrow A=4\left(-\frac{1}{2}\right)^2-2\left(-\frac{\sqrt{3}}{2}\right)+3\left(-\frac{1}{2}\right):\left(-\frac{\sqrt{3}}{2}\right)=1+2\sqrt{3}\)
b/ Bạn viết lại biểu thức, ko biết đâu là tử đâu là mẫu, và góc \(\alpha\) đề có cho nằm ở khoảng nào ko?
a) nếu sin x = 3.cos x Tính sin x. cos x = .....?
b) cho sin x\(=\frac{2}{3}\). tính \(5cos^2x+2sin^2x=...?\)
c) sin x + cos x = \(\frac{5}{7}\). tính tan x = ...?
d) tan x = \(\frac{1}{2}\) tính \(\frac{sinx+cosx}{cosx-sinx}=...?\)
m.n giúp mk nha, ai nhanh mk tick cho nha
Giải phương trình
( 2sin x - 1)(2sin 2x + 1) = 3 - 4 cos2x
lm trên symbolab.com
\(\left(2\sin x-1\right)\left(2\sin2x+1\right)=3-4\cos^2x\)
\(\Leftrightarrow\left(2\sin x-1\right)\left(2\sin2x+1\right)=3-4\left(2-\sin^2x\right)\)
\(\Leftrightarrow\left(2\sin x-1\right)\left(2\sin2x+1\right)=4\sin^2x-1\)
\(\Leftrightarrow\left(2\sin x-1\right)\left(2\sin2x+1\right)=\left(2\sin x-1\right)\left(2\sin x+1\right)\)
\(\Leftrightarrow2\sin2x+1=2\sin x+1\)
\(\Leftrightarrow\sin2x=\sin x\)
\(\Leftrightarrow\sin2x-\sin x=0\)
\(\Leftrightarrow2\cos\frac{3}{2}-\cos\frac{x}{2}=0\)
\(\Leftrightarrow\orbr{\begin{cases}\cos\frac{3}{2}=0\\\cos\frac{x}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x}{2}=\frac{\pi}{2}+k2\pi\\\frac{x}{2}=\frac{\pi}{2}+k2\pi\end{cases}\left(k\inℤ\right)}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{3}+\frac{2\pi}{3}k\\x=\pi+4k\pi\end{cases}\left(k\inℤ\right)}\)
Giải các phương trình sau:
1) 2cos2x + 6sinx.cosx + 6sin2x = 1
2) Cos2x – sinx.cosx – 2sin2x – 1 = 0
3) Cos2x + √3sinx.cosx – 1 = 0
4) 2√2(sinx + cosx).cosx = 3 + 2cos2x
1/
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)
\(6tan^2x+6tanx+2=\frac{1}{cos^2x}\)
\(\Leftrightarrow6tan^2x+6tanx+2=1+tan^2x\)
\(\Leftrightarrow5tan^2x+6tanx+1=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=-1\\tanx=-\frac{1}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{1}{5}\right)+k\pi\end{matrix}\right.\)
b/
Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)
\(\Leftrightarrow1-tanx-2tan^2x-\frac{1}{cos^2x}=0\)
\(\Leftrightarrow1-tanx-2tan^2x-1-tan^2x=0\)
\(\Leftrightarrow3tan^2x+tanx=0\)
\(\Leftrightarrow tanx\left(3tanx+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=0\\tanx=-\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=arctan\left(-\frac{1}{3}\right)+k\pi\end{matrix}\right.\)
//Hoặc có thể giải như sau:
\(\Leftrightarrow1-sin^2x-sinx.cosx-2sin^2x-1=0\)
\(\Leftrightarrow3sin^2x+sinx.cosx=0\)
\(\Leftrightarrow sinx\left(3sinx+cosx\right)=0\)
\(\Leftrightarrow...\)
c/
\(\Leftrightarrow1-sin^2x+\sqrt{3}sinx.cosx-1=0\)
\(\Leftrightarrow\sqrt{3}sinx.cosx-sin^2x=0\)
\(\Leftrightarrow sinx\left(\sqrt{3}cosx-sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\\sqrt{3}cosx=sinx\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\tanx=\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)
Chứng minh đẳng thức sau :
a, \(\left(\frac{tan^2x-1}{2tanx}\right)^2\) - \(\frac{1}{4sin^2x.cos^2x}\) = -1
b, \(\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}\) = 1 + tan2x
c, \(\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cotx\right)}=sinx-cosx\)
d, \(\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\frac{1}{sinx.cosx}\)
e, cos2x.(cos2x + 2sin2x + sin2x.tan2x) = 1
\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)
\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)
b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)
=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)
d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)
\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)
=\(\frac{1}{cosx.sinx}=VP\)
e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)
c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)
=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)
\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)
Đây nha bạn
1. cho sinx + cosx = 1/2 . Tính sin3x + cos3x = ?
2. P = \(\frac{1-2sin^2x}{2cot\left(\frac{\pi}{4}+x\right)cos^2\left(\frac{\pi}{4}-x\right)}\)
3. cho tanx + cotx = 2 . Tính tan2x + cot2x
\(sinx+cosx=\frac{1}{2}\Rightarrow\left(sinx+cosx\right)^2=\frac{1}{4}\Rightarrow sin^2x+cos^2x+2sinx.cosx=\frac{1}{4}\)
\(\Rightarrow2sinx.cosx=\frac{1}{4}-1=-\frac{3}{4}\Rightarrow sinx.cosx=-\frac{3}{8}\)
Vậy ta có:
\(sin^3x+cos^3x=\left(sinx+cosx\right)\left[\left(sinx+cosx\right)^2-3sinx.cosx\right]\)
\(=\frac{1}{2}\left(\frac{1}{4}+\frac{9}{8}\right)=\frac{11}{16}\)
Bài 2: Mục đích của bài này là gì bạn? Ko thấy yêu cầu?
Bài 3:
\(tanx+cotx=2\Rightarrow\left(tanx+cotx\right)^2=4\)
\(\Rightarrow tan^2x+2tanx.cotx+cot^2x=4\Rightarrow tan^2x+cot^2x+2=4\)
\(\Rightarrow tan^2x+cot^2x=2\)