Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Sơ Hạ
Xem chi tiết
Akai Haruma
26 tháng 10 2018 lúc 23:29

a)

\((\sin x+\cos x)^2=\sin ^2x+2\sin x\cos x+\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)+2\sin x\cos x=1+2\sin x\cos x\)

b)

\(\sin ^4x+\cos ^4x=\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x-2\sin ^2\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x\)

\(=1-2\sin ^2x\cos ^2x\)

c)

\(\tan ^2x-\sin ^2x=(\frac{\sin x}{\cos x})^2-\sin ^2x\)

\(=\sin ^2x\left(\frac{1}{\cos ^2x}-1\right)=\sin ^2x. \frac{1-\cos ^2x}{\cos ^2x}=\sin ^2x.\frac{\sin ^2x}{\cos ^2x}\)

\(=\sin ^2x\left(\frac{\sin x}{\cos x}\right)^2=\sin ^2x\tan ^2x\)

Akai Haruma
26 tháng 10 2018 lúc 23:33

d)

\(\sin ^6x+\cos ^6x=(\sin ^2x)^3+(\cos ^2x)^3\)

\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)\)

\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x\)

\(=(\sin ^4x+\cos ^4x)-\sin ^2x\cos ^2x=1-2\sin ^2x\cos ^2x-\sin ^2x\cos ^2x\)

\(=1-3\sin ^2x\cos ^2x\) (theo kq phần b)

e)

\(\sin x\cos x(1+\tan x)(1+\cot x)=\sin x\cos x(1+\frac{\sin x}{\cos x})(1+\frac{\cos x}{\sin x})\)

\(=\sin x\cos x.\frac{\cos x+\sin x}{\cos x}.\frac{\sin x+\cos x}{\sin x}\)

\(=(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x\)

\(=1+2\sin x\cos x\)

-------------

P/s: Nói chung cứ bám vào công thức \(\sin ^2x+\cos ^2x=1\)

Nhan Thị Thảo Vy
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 11 2019 lúc 20:19

\(D=\frac{2sin^2x-cos^2x}{5sin^2x+cos^2x}=\frac{\frac{2sin^2x}{cos^2x}-1}{\frac{5sin^2x}{cos^2x}+1}=\frac{2tan^2x-1}{5tan^2x+1}=\frac{2.5^2-1}{5.5^2+1}=\frac{7}{18}\)

Khách vãng lai đã xóa
~P.T.D~
Xem chi tiết
Ll
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 4 2019 lúc 15:10

a/ \(\pi< a< \frac{3\pi}{2}\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{3}}{2}\)

\(\Rightarrow A=4\left(-\frac{1}{2}\right)^2-2\left(-\frac{\sqrt{3}}{2}\right)+3\left(-\frac{1}{2}\right):\left(-\frac{\sqrt{3}}{2}\right)=1+2\sqrt{3}\)

b/ Bạn viết lại biểu thức, ko biết đâu là tử đâu là mẫu, và góc \(\alpha\) đề có cho nằm ở khoảng nào ko?

Nguyễn Hà Lan Anh
Xem chi tiết
Ngoc Anhh
Xem chi tiết
Khách vãng lai
17 tháng 8 2020 lúc 19:44

lm trên symbolab.com

Khách vãng lai đã xóa
Tran Le Khanh Linh
17 tháng 8 2020 lúc 21:20

\(\left(2\sin x-1\right)\left(2\sin2x+1\right)=3-4\cos^2x\)

\(\Leftrightarrow\left(2\sin x-1\right)\left(2\sin2x+1\right)=3-4\left(2-\sin^2x\right)\)

\(\Leftrightarrow\left(2\sin x-1\right)\left(2\sin2x+1\right)=4\sin^2x-1\)

\(\Leftrightarrow\left(2\sin x-1\right)\left(2\sin2x+1\right)=\left(2\sin x-1\right)\left(2\sin x+1\right)\)

\(\Leftrightarrow2\sin2x+1=2\sin x+1\)

\(\Leftrightarrow\sin2x=\sin x\)

\(\Leftrightarrow\sin2x-\sin x=0\)

\(\Leftrightarrow2\cos\frac{3}{2}-\cos\frac{x}{2}=0\)

\(\Leftrightarrow\orbr{\begin{cases}\cos\frac{3}{2}=0\\\cos\frac{x}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x}{2}=\frac{\pi}{2}+k2\pi\\\frac{x}{2}=\frac{\pi}{2}+k2\pi\end{cases}\left(k\inℤ\right)}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{3}+\frac{2\pi}{3}k\\x=\pi+4k\pi\end{cases}\left(k\inℤ\right)}\)

Khách vãng lai đã xóa
Ngân Lại
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 7 2020 lúc 18:13

1/

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(6tan^2x+6tanx+2=\frac{1}{cos^2x}\)

\(\Leftrightarrow6tan^2x+6tanx+2=1+tan^2x\)

\(\Leftrightarrow5tan^2x+6tanx+1=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=-1\\tanx=-\frac{1}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{1}{5}\right)+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 18:16

b/

Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)

\(\Leftrightarrow1-tanx-2tan^2x-\frac{1}{cos^2x}=0\)

\(\Leftrightarrow1-tanx-2tan^2x-1-tan^2x=0\)

\(\Leftrightarrow3tan^2x+tanx=0\)

\(\Leftrightarrow tanx\left(3tanx+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=0\\tanx=-\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=arctan\left(-\frac{1}{3}\right)+k\pi\end{matrix}\right.\)

//Hoặc có thể giải như sau:

\(\Leftrightarrow1-sin^2x-sinx.cosx-2sin^2x-1=0\)

\(\Leftrightarrow3sin^2x+sinx.cosx=0\)

\(\Leftrightarrow sinx\left(3sinx+cosx\right)=0\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 18:18

c/

\(\Leftrightarrow1-sin^2x+\sqrt{3}sinx.cosx-1=0\)

\(\Leftrightarrow\sqrt{3}sinx.cosx-sin^2x=0\)

\(\Leftrightarrow sinx\left(\sqrt{3}cosx-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\\sqrt{3}cosx=sinx\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\tanx=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)

Moon Jim Kim
Xem chi tiết
Hân Ngọc
29 tháng 4 2020 lúc 21:32

\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)

\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)

b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)

=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)

d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)

\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)

=\(\frac{1}{cosx.sinx}=VP\)

e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)

c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)

=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)

\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)

Đây nha bạn

Jackson Roy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 4 2019 lúc 22:38

\(sinx+cosx=\frac{1}{2}\Rightarrow\left(sinx+cosx\right)^2=\frac{1}{4}\Rightarrow sin^2x+cos^2x+2sinx.cosx=\frac{1}{4}\)

\(\Rightarrow2sinx.cosx=\frac{1}{4}-1=-\frac{3}{4}\Rightarrow sinx.cosx=-\frac{3}{8}\)

Vậy ta có:

\(sin^3x+cos^3x=\left(sinx+cosx\right)\left[\left(sinx+cosx\right)^2-3sinx.cosx\right]\)

\(=\frac{1}{2}\left(\frac{1}{4}+\frac{9}{8}\right)=\frac{11}{16}\)

Bài 2: Mục đích của bài này là gì bạn? Ko thấy yêu cầu?

Bài 3:

\(tanx+cotx=2\Rightarrow\left(tanx+cotx\right)^2=4\)

\(\Rightarrow tan^2x+2tanx.cotx+cot^2x=4\Rightarrow tan^2x+cot^2x+2=4\)

\(\Rightarrow tan^2x+cot^2x=2\)