viết pttt Δ của đường trong C: (x-1)2 (y+2)2 =8 biết tiếp tuyến đi qua A( 5,-2)
viết pttt của đường tròn (x-1)^2 + (y+2)^2 = 8, biết tiếp tuyến đi qua A(5;-2)
Đường tròn đã cho có tâm \(I\left(1;-2\right)\)
\(\Rightarrow\overrightarrow{IA}=\left(4;0\right)=4\left(1;0\right)\)
\(\Rightarrow\) Tiếp tuyến đi qua điểm \(A\left(5;-2\right)\) và nhận \(\overrightarrow{n}=\left(1;0\right)\) làm VTPT.
PT tiếp tuyến: \(1\left(x-5\right)+0\left(y+2\right)=0\Leftrightarrow x-5=0\)
H/s: y=x^3 - 5×x^2 +2 . Viết pttt sao cho tiếp tuyến đi qua điểm A (0; 2)
Trong mặt phẳng Oxy, cho điểm A(2;-4), đường thẳng Δ: x = -3 + 2t, y = 1 + t và đường tròn (C): x^2 + y^2 – 2x – 8y – 8 = 0.
a. Tìm một vectơ pháp tuyến n của đường thẳng Δ. Lập phương trình tổng quát của đường thẳng d, biết d đi qua điểm A và nhận n làm vectơ pháp tuyến.
b. Viết phương trình đường tròn (T), biết (T) có tâm A và tiếp xúc với Δ.
c. Gọi P, Q là các giao điểm của Δ và (C). Tìm toạ độ điểm M thuộc (C) sao cho tam giác MPQ cân tại M.
A nhé
hihhihihiihihihhiihhiihihihih
a) viết phương trình đường tròn (C) có tâm I(2,3) đi qua điểm A(5,7) b) viết phương trình tiếp tuyến của đường tròn (C) : (x-1)^2 + ( y+5)^2 =4 . Biết tiếp tuyến song song với đường thẳng (d) 3x + 4y - 1 =0
a) Để tìm phương trình đường tròn © có tâm I(2,3) đi qua điểm A(5,7), ta sử dụng công thức khoảng cách từ điểm đến tâm đường tròn:
$I\hat{A} = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2}$
Với I là tâm đường tròn, A là điểm trên đường tròn.
Ta có: $x_I = 2$, $y_I = 3$, $x_A = 5$, $y_A = 7$
Thay vào công thức ta được:
$\sqrt{(5-2)^2 + (7-3)^2} = \sqrt{34}$
Vậy bán kính của đường tròn là $\sqrt{34}$.
Phương trình đường tròn © có tâm I(2,3) và bán kính $\sqrt{34}$ là:
$(x-2)^2 + (y-3)^2 = 34$
b) Để tìm phương trình tiếp tuyến của đường tròn © : $(x-1)^2 + ( y+5)^2 =4$, ta cần tìm đạo hàm của phương trình đường tròn tại điểm cần tìm tiếp tuyến.
Ta có phương trình đường tròn chính giữa:
$(x-1)^2 + (y+5)^2 = 2^2$
Đạo hàm hai vế theo x:
$2(x-1) + 2(y+5)y' = 0$
Suy ra:
$y' = -\frac{x-1}{y+5}$
Tại điểm M(x,y) trên đường tròn, ta có:
$(x-1)^2 + (y+5)^2 = 2^2$
Đạo hàm hai vế theo x:
$2(x-1) + 2(y+5)y' = 0$
Suy ra:
$y' = -\frac{x-1}{y+5}$
Vậy tại điểm M(x,y), phương trình tiếp tuyến của đường tròn là:
$y - y_M = y'(x-x_M)$
Thay $y'$ bằng $\frac{-(x-1)}{y+5}$ và $x_M$, $y_M$ bằng 1, -5 ta được:
$y + 5 = \frac{-(x-1)}{y+5}(x-1)$
Simplifying:
$x(y+5) + y(x-1) = 6$
Đường thẳng (d) có phương trình là $3x + 4y - 1 = 0$. Vì tiếp tuyến song song với đường thẳng (d) nên hệ số góc của tiếp tuyến
1. Cho hàm số y=2x-1/x-1 . Lấy M thuộc C với XM=m . tiếp tuyến của C tại M cắt 2 đường tiệm cận tại A,B . Gọi I là giao của 2 đường tiệm cận . CMR : M là trung điểm của AB và tam giác IAB có diện tích không phụ thuộc vào M
2.cho y=x+2/x-3 tìm M thuộc C sao cho khoảng cách từ M đến 2 đường tiệm cận C bằng nhau
3. cho y = x+2/x-2 tìm M thuộc C sao cho M cách đều hai trục tọa độ . viết pttt của C biết tiếp tuyến đó đi qua A(-6;5)
4 . cho y = x+1/x-1 . CMR (d) : 2x-y+m=0 luôn cắt C tại A,B trên 2 nhánh của (C) . tìm m để AB ngắn nhất
Cho tam giác ABC đều
D thuộc AB , E thuộc AC sao cho BD = AE
CM : Khi D,E thay đổi ( di chuyển ) trên AB,AC thì đường trung tuyến DE luôn đi qua điểm cố định
Help me !!!
viết phương trình tiếp tuyến của đường tròn x2 + y2 = 4 trong mỗi trường hợp sau : a) tiếp tuyến song song với đường thẳng 3x - y + 17 = 0 ; b) tiếp tuyến vuông góc với đường thẳng x + 2y - 5 = 0 ; c) tiếp tuyến đi qua điểm (2,-2) .
viết phương trình tiếp tuyến của đường tròn x2 + y2 = 4 trong mỗi trường hợp sau : a) tiếp tuyến song song với đường thẳng 3x - y + 17 = 0 ; b) tiếp tuyến vuông góc với đường thẳng x + 2y - 5 = 0 ; c) tiếp tuyến đi qua điểm (2,-2).
viết phương trình tiếp tuyến của đường tròn x2 + y2 = 4 trong mỗi trường hợp sau : a) tiếp tuyến song song với đường thẳng 3x - y + 17 = 0 ; b) tiếp tuyến vuông góc với đường thẳng x + 2y - 5 = 0 ; c) tiếp tuyến đi qua điểm (2,-2) .
viết phương trình tiếp tuyến của đường tròn x2 + y2 = 4 trong mỗi trường hợp sau : a) tiếp tuyến song song với đường thẳng 3x - y + 17 = 0 ; b) tiếp tuyến vuông góc với đường thẳng x + 2y - 5 = 0 ; c) tiếp tuyến đi qua điểm (2,-2) .