Tìm dư khi chia đa thức x^99+x^55+x^11+x+7 cho đa thức x+1
Tìm dư của phép chia đa thức :
X99 + x55 +x11+x+7 cho x2-1
Giúp mình vs :(((
gọi Q(x) là thương của phép chia x99+x55+x11+x+7x99+x55+x11+x+7 chox2−1x2−1
vì bậc của đa thức thương là 2 nên gọi đa thức dư cần tìm là ax+b
ta có x99+x55+x11+x+7=(x2−1)Q(x)+ax+bx99+x55+x11+x+7=(x2−1)Q(x)+ax+b
=(x−1)(x+1)Q(x)+ax+b(x−1)(x+1)Q(x)+ax+b (*)
thay x=1 ở (*) cho ta được 11=a+b
thay x=-1 ở (*) cho ta được 3=-a+b
ta có a+b+(-a+b)=11+3=14
⇔2b=14⇔b=7⇒a=11−7=4⇔2b=14⇔b=7⇒a=11−7=4
Vậy dư của phép chia đa thức P(x)= x99+x55+x11+x+7x99+x55+x11+x+7 chox2−1x2−1 là 4x+7
Dư của phép chia đa thức P(x)= \(x^{99}+x^{55}+x^{11}+x+7\) cho \(x^2-1\) là?
a) Cho đa thức f(x) = x^100 + x^99 + ... + x^2 + x + 1 . tìm dư của phép chia đa thức f(x) cho đa thức x^2 -1
b) Tìm đa thức f(x) biết rằng f(x) chia cho x-2 thì dư 2, f(x) chia cho x-3 thì dư 7 , f(x) chia cho x^5 - 5x + 6 thì đc thương là 1 - x^2 và còn dư
Huyền hỏi 2 bài liên tiếp à viết nhanh thế
Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?
Số dư của phép chia đa thức
\(P\left(x\right)=x^{99}+x^{55}+x^{11}+x+7\) cho \(x^2-1\) là :
gọi Q(x) là thương của phép chia \(x^{99}+x^{55}+x^{11}+x+7\) cho\(x^2-1\)
vì bậc của đa thức thương là 2 nên gọi đa thức dư cần tìm là ax+b
ta có \(x^{99}+x^{55}+x^{11}+x+7=\left(x^2-1\right)Q_{\left(x\right)}+ax+b\)
=\(\left(x^{ }-1\right)\left(x+1\right)Q_{\left(x\right)}+ax+b\) (*)
thay x=1 ở (*) cho ta được 11=a+b
thay x=-1 ở (*) cho ta được 3=-a+b
ta có a+b+(-a+b)=11+3=14
\(\Leftrightarrow2b=14\\ \Leftrightarrow b=7\Rightarrow a=11-7=4\)
Vậy dư của phép chia đa thức P(x)= \(x^{99}+x^{55}+x^{11}+x+7\) cho\(x^2-1\) là 4x+7
Tìm các hệ số a, b và c biết:
a) Đa thức x 3 +2ax + b chia hết cho đa thức x - 1 còn khi chia cho đa thức x + 2 được dư là 3.
b) Đa thức a x 3 + b x 2 + c khi chia cho đa thức x dư - 3 còn khi chia cho đa thức x 2 - 4 được dư là 4x - 11.
Tìm dư của phép chia đa thức x2014 + x1007 + x99 + 2*x11 +7 cho đa thức x2 - 1 .
Gọi R(x) là đa thức dư khi chia đa thức \(f\left(x\right)=x^{100}+x^{99}+x^{98}+x^5+2020\) cho đa thức \(g\left(x\right)=x^2-1\).
Tìm R(2021)
Ta thấy
\(f\left(x\right):g\left(x\right)\)
\(\Rightarrow\left(x^{100}+x^{99}+x^{98}+x^5+2020\right):\left(x^2-1\right)\)
\(=\left(x^{98}+x^{97}+2x^{96}+2x^{95}+...2x^4+3x^3+2x^2+3x+2\right)\) có số dư là \(R\left(x\right)=3x+2022\)
\(\Rightarrow R\left(2021\right)=3.2021+2022=8085\)
Cho đa thức P(x) biết: P(x) chia cho x – 1 dư 5; x – 2 dư 7; x – 3 dư 10; x + 2 dư – 4. Tìm đa thức dư R(x) khi chia đa thức P(x) cho (x – 1)(x – 2)(x – 3)(x + 2)
Giúp em với thầy cô ơi!!!
1) Đa thức P(x) khi chia cho x-2 thì dư 5, khi chia cho x-3 thì dư 7. Phần dư của đa thức P(x) khi chia cho (x-2)(x-3) là?
2) tÌM ĐA THỨC P(X) biết p(x) chia x-1 dư -2, P(x) chia cho x+1 dư 3, P(x) chia x2 -1 được thương là 2x và còn dư
Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x) =>P(x)=(x-2).A(x)+5 (1) và P(x)=(x-3).B(x)=7 (2) Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x) Ta có : (x-2)(x-3) có bậc là 2 => R(x) có bậc là 1 => R(x) có dạng ax+b (a,b là số nguyên ) =>R(x)=(x-2)(x-3).C(x)+ax+b (3) thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5 thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7 => a=2,b=1 =>R(x)=2x+1 Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1