Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Chí Thành
Xem chi tiết
đỗ thị lan anh
21 tháng 8 2016 lúc 22:02

b) A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

   3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

3A-A=\(1-\frac{1}{3^{99}}\)

   2A=\(1-\frac{1}{3^{99}}\)

vì 2A<1

=> A<\(\frac{1}{2}\)

Thiên Thanh
Xem chi tiết
Sách Giáo Khoa
12 tháng 1 2020 lúc 14:38

Ta có:

\(S=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)\(=\frac{1}{4}-\frac{1}{100}=\frac{24}{100}< \frac{50}{100}=\frac{1}{2}\)

Khách vãng lai đã xóa
Học dốt :)
12 tháng 1 2020 lúc 15:08

Ta có : \(\frac{1}{5^2}=\frac{1}{5.5}< \frac{1}{4.5}\)

\(\frac{1}{6^2}=\frac{1}{6.6}< \frac{1}{5.6}\)

\(\frac{1}{7^2}=\frac{1}{7.7}< \frac{1}{6.7}\)

...

\(\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)

\(\Rightarrow S< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)

\(S< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)

\(S< \frac{1}{4}-\frac{1}{100}=\frac{6}{25}=\frac{24}{100}\)

\(\frac{24}{100}< \frac{50}{100}=\frac{1}{2}\)

\(\Rightarrow S< \frac{1}{2}\)

Vậy S<\(\frac{1}{2}\).

Khách vãng lai đã xóa
Vũ Đức Đại
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Diệu Huyền
17 tháng 12 2019 lúc 9:11

Violympic toán 7

Khách vãng lai đã xóa
Trần Quốc Tuấn hi
Xem chi tiết
Vũ Đức Đại
Xem chi tiết
duong
15 tháng 1 2020 lúc 21:39

Ta có: \(\frac{1}{5^2}< \frac{1}{4.5};\frac{1}{6^2}< \frac{1}{5.6};...;\frac{1}{100^2}< \frac{1}{99.100}\)

Cộng vế với vế ta được: \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{100}=\frac{6}{25}< \frac{6}{24}=\frac{1}{4}\)(1)

Tương tự: \(\frac{1}{5^2}>\frac{1}{5.6};\frac{1}{6^2}>\frac{1}{6.7};...;\frac{1}{100^2}>\frac{1}{100.101}\)

Cộng vế với vế ta được \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\)(2)

Từ (1) và (2) =>đpcm

Khách vãng lai đã xóa
👁💧👄💧👁
Xem chi tiết
👁💧👄💧👁
16 tháng 3 2019 lúc 11:52

Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...

Hoang Duc Thinh
Xem chi tiết
lâm phạm khánh
Xem chi tiết
Lê Viết HIếu
Xem chi tiết
To Kill A Mockingbird
14 tháng 8 2017 lúc 21:20

ok, ta co  \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)

\(A< \frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)

\(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+..+\frac{1}{99}-\frac{1}{100}\)

\(A< \frac{1}{4}-\frac{1}{100}\)

\(A< \frac{1}{4}\)

Lai co  \(A>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{100\cdot101}=\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+..+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{5}-\frac{1}{101}\)

\(A>\frac{1}{6}\)