Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Uyên
Xem chi tiết
Phương Uyên
Xem chi tiết
lehoangngan0702
Xem chi tiết
Big City Boy
Xem chi tiết
Akai Haruma
5 tháng 2 2021 lúc 0:53

Hình vẽ:

undefined

Akai Haruma
5 tháng 2 2021 lúc 1:01

Lời giải:

Kẻ $AH\perp BC$. Vì $AD=AB$ nên $ABD$ là tam giác cân tại $A$. Do đó đường cao $AH$ đồng thời là đường trung tuyến, hay $H$ là trung điểm $BD$

$\Rightarrow HD=BD:2=1$ (cm)

Áp dụng định lý Pitago:

$AH^2=AD^2-HD^2=5-1=4$ (cm)

$AC^2=AH^2+HC^2=AH^2+(HD+DC)^2$

$\Leftrightarrow AC^2=4+(1+DC)^2=5+DC^2+2DC(1)$

Theo định lý tia phân giác ta cũng có:

$\frac{BD}{DC}=\frac{AB}{AC}\Leftrightarrow \frac{2}{DC}=\frac{\sqrt{5}}{AC}(2)$

Từ $(1);(2)\Rightarrow DC=10$ (cm)

Nguyễn Thị Việt Trà
Xem chi tiết
『Ares』
1 tháng 12 2023 lúc 14:26

Dễ vl

 

jdbcjkervkver
Xem chi tiết
Dương Ánh Ngọc
Xem chi tiết
Shiba Inu
25 tháng 2 2021 lúc 10:25

Link tham khảo : Cho tam giác ABC có các góc B và C là góc nhọn, đường phân giác AD. Biết AD AB = √5cm, BD =2cm. Tính độ dài DC. - Hoc24

Quỳnh Như Trần
Xem chi tiết
Huy Hoàng
29 tháng 4 2018 lúc 0:30

1/

a/ Ta có AB < BC (5cm < 6cm)

=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)

=> \(\widehat{ABC}< \widehat{A}\)

b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))

Cạnh AD chung

=> \(\Delta ADB\)\(\Delta ADC\)(c. g. c) (đpcm)

c/ Ta có \(\Delta ABC\)cân tại A

=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)

và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)

=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)

=> F là trung điểm AB (đpcm)

d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)

=> G là trọng tâm \(\Delta ABC\)

và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))

=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)

=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:

\(BG=\sqrt{BD^2+GD^2}\)

=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)

=> \(BG=\sqrt{9+\frac{64}{9}}\)

=> \(BG=\sqrt{\frac{145}{9}}\)

=> BG \(\approx\)4, 01 (cm)

Law141208
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2021 lúc 13:37

a: Xét ΔAMC và ΔDMB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đó: ΔAMC=ΔDMB

Suy ra: AC=DB và \(\widehat{MAC}=\widehat{MDB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//DB

hay DB\(\perp\)AB

Xét ΔCAB vuông tại A và ΔDBA vuông tại D có 

BA chung

CA=DB

Do đó: ΔCAB=ΔDBA

Suy ra: CB=DA

b: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

Suy ra: AD=10cm

hehehe
3 tháng 9 2021 lúc 14:08

he