Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Quyen Nguyen
Xem chi tiết
o0o I am a studious pers...
2 tháng 8 2016 lúc 16:34

\(C=5+3\left(2x-1\right)^2\)

\(=5+3\left(3x-1\right)^2\ge5\)

\(Min=5\Leftrightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)

Quyen Nguyen
Xem chi tiết
Trần Việt Linh
2 tháng 8 2016 lúc 16:48

\(A=5+3\left(2x-1\right)^2\)

Vì \(\left(2x-1\right)^2\ge0\) với mọi x

=>\(5+\left(2x-1\right)^2\ge5\)

Vậy GTNN của A là 5 khi x=1/2

Quyen Nguyen
2 tháng 8 2016 lúc 16:51

ai làm được các bài nữa ko ạ. mình cần gấp lắm

Quyen Nguyen
Xem chi tiết
ღHàn Thiên Băng ღ
Xem chi tiết
luuthianhhuyen
3 tháng 12 2018 lúc 15:29

\(x^2-4x+1=x^2-2\cdot x\cdot2+4-4+1=\left(x-2\right)^2-4+1\)

\(=\left(x-2\right)^2-3\)    \(\forall x\in Z\)

\(\Rightarrow A_{min}=-3khix=2\)

Nguyệt
3 tháng 12 2018 lúc 16:35

\(a,A=x^2-4x+1=x^2-2.2.x+2^2-3=\left(x-2\right)^2-3\ge-3\)

dấu = xảy ra khi x-2=0

=> x=2

Vậy MinA=-3 khi x=2

\(b,B=5-8x-x^2=-\left(x^2+8x+5\right)=-\left(x^2+2.4.x+4^2\right)+9=-\left(x+4\right)^2+9\le9\)

dấu = xảy ra khi x+4=0

=> x=-4

Vậy MaxB=9 khi x=-4

\(c,C=5x-x^2=-\left(x^2-5x\right)=-\left(x^2-\frac{2.x.5}{2}+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

dấu = xảy ra khi \(x-\frac{5}{2}=0\)

=> x=\(\frac{5}{2}\)

Vậy Max C=\(\frac{25}{4}\)khi x=\(\frac{5}{2}\)

\(E=\frac{1}{x^2+5x+14}=\frac{1}{x^2+\frac{2.x.5}{2}+\frac{25}{4}+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)

\(\left(x+\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)

dấu = xảy ra khi \(x+\frac{5}{2}=0\)

=> x\(=-\frac{5}{2}\)

vì tử thức >0,mẫu thức nhỏ nhất và lớn hơn 0 => E lớnnhất khi mẫu thức nhỏ nhất 

Vậy \(MaxE=\frac{31}{4}\)khi x\(=-\frac{5}{2}\)

kudo shinichi
3 tháng 12 2018 lúc 16:37

Tự trình bày nhé. Gợi ý thôi

\(B=5-8x-x^2\)

\(B=-\left(x^2+2.x.4+4^2\right)+21\)

\(B=-\left(x+4\right)^2+21\le21\forall x\)

\(C=5x-x^2=-\left(x^2-2.x.2,5+2,5^2\right)+6,25=-\left(x-2,5\right)^2+6,25\le6,25\forall x\)

\(D=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)

\(D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(D=\left(x^2+5x\right)^2-36\ge-36\forall x\)

Nguyễn Xuân Nguyên
Xem chi tiết
thang
14 tháng 6 2016 lúc 7:39

lop 8 con lic le 3

Nguyễn Thị Khánh Linh
Xem chi tiết
camcon
Xem chi tiết
Yeutoanhoc
25 tháng 6 2021 lúc 15:32

`A=x^2-2x+5`

`=x^2-2x+1+4`

`=(x-1)^2+4>=4`

Dấu "=" `<=>x=1`

`B=4x^2+4x+3`

`=4x^2+4x+1+2`

`=(2x+1)^2+2>=2`

Dấu "=" xảy ra khi `x=-1/2`

`C=9x^2-6x+7`

`=9x^2-6x+1+6`

`=(3x-1)^2+6>=6`

Dấu '=' xảy ra khi `x=1/3`

`D=5x^2+3x+8`

`=5(x^2+3/5x)+8`

`=5(x^2+3/5x+9/100-9/100)+8`

`=5(x+3/10)^2+151/20>=151/20`

Dấu "=" xảy ra khi `x=-3/10`

An Thy
25 tháng 6 2021 lúc 15:36

\(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

Ta có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow A_{min}=4\) khi \(x=1\)

\(B=4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\)

Ta có: \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+2\ge2\Rightarrow B_{min}=2\) khi \(x=-\dfrac{1}{2}\)

\(C=9x^2-6x+7=9x^2-6x+1+6=\left(3x-1\right)^2+6\)

Ta có: \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+6\ge6\Rightarrow C_{min}=6\) khi \(x=\dfrac{1}{3}\)

\(D=5x^2+3x+8\Rightarrow5\left(x^2+2.x.\dfrac{3}{10}+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\)

Ta có: \(5\left(x+\dfrac{3}{10}\right)^2\ge0\Rightarrow5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)

\(\Rightarrow D_{min}=\dfrac{151}{20}\) khi \(x=-\dfrac{3}{10}\)

๖ۣۜDũ๖ۣۜN๖ۣۜG
25 tháng 6 2021 lúc 15:34

- A = (x-1)2 + 4 \(\ge4\)

Dấu "=" <=> x = 1

- B = (2x+1)2 +2 \(\ge2\)

Dấu "=" xảy ra <=> x = \(\dfrac{-1}{2}\)

- C = (3x - 1)2 + 6 \(\ge6\)

Dấu "=" <=> x = \(\dfrac{1}{3}\)

- D = \(5\left(x^2+\dfrac{3}{5}x+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)

Dấu "=" <=> x = \(\dfrac{-3}{10}\)

Ngô Linh
Xem chi tiết
_Guiltykamikk_
23 tháng 5 2018 lúc 17:14

\(A=x^2-2x+10\)

\(A=\left(x^2-2x+1\right)+9\)

\(A=\left(x-1\right)^2+9\)

Mà  \(\left(x-1\right)^2\ge0\)

\(\Rightarrow A\ge9\)

Dấu "=" xảy ra khi :

\(x-1=0\Leftrightarrow x=1\)

Vậy Min A = 9 khi x = 1

_Guiltykamikk_
23 tháng 5 2018 lúc 17:17

\(B=x^2-5x-7\)

\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)

\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)

Mà  \(\left(x-\frac{5}{2}\right)^2\ge0\)

\(\Rightarrow B\ge-\frac{53}{4}\)

Dấu "=" xảy ra khi :

\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Vậy  \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)

_Guiltykamikk_
23 tháng 5 2018 lúc 17:20

\(C=3x^2+3x-5\)

\(3C=9x^2+9x-15\)

\(3C=\left(9x^2+9x+\frac{9}{4}\right)-\frac{69}{4}\)

\(3C=\left(3x+\frac{3}{2}\right)^2-\frac{69}{4}\)

Mà  \(\left(3x+\frac{3}{2}\right)^2\ge0\)

\(\Rightarrow3C\ge-\frac{69}{4}\)

\(\Leftrightarrow C\ge-\frac{23}{4}\)

Dấu "=" xảy ra khi :

\(3x+\frac{3}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy ...