\(C=\frac{x^2+5x+8}{x^2+2x+1}=\frac{x^2+2x+1+3x+3+4}{x^2+2x+1}\)
\(=\frac{\left(x+1\right)^2+3\left(x+1\right)+4}{\left(x+1\right)^2}=1+\frac{3}{x+1}+\frac{4}{\left(x+1\right)^2}\)
Đặt \(\frac{1}{x+1}=a\)\(\Rightarrow C=1+3a+4a^2\)
\(\Rightarrow C=4\left(a^2+\frac{3}{4}a+\frac{1}{4}\right)=4\left(a^2+2.\frac{3}{8}+\frac{9}{64}-\frac{9}{64}+\frac{1}{4}\right)\)
\(=4\left(a+\frac{3}{8}\right)^2+\frac{7}{16}\)
\(\Rightarrow C_{min}=\frac{7}{16}\Leftrightarrow\)\(a=-\frac{3}{8}\Leftrightarrow\frac{1}{x+1}=-\frac{3}{8}\)
\(\Rightarrow3\left(x+1\right)=-8\Rightarrow x=-\frac{11}{3}\)
Vậy \(C_{min}=\frac{16}{7}\Leftrightarrow x=-\frac{11}{3}\)